463 research outputs found
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells.
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation
Dramatic age-related changes in nuclear and genome copy number in the nematode Caenorhabditis elegans
The nematode Caenorhabditis elegans has become one of the most widely used model systems for the study of aging, yet very little is known about how C. elegans age. The development of the worm, from egg to young adult has been completely mapped at the cellular level, but such detailed studies have not been extended throughout the adult lifespan. Numerous single gene mutations, drug treatments and environmental manipulations have been found to extend worm lifespan. To interpret the mechanism of action of such aging interventions, studies to characterize normal worm aging, similar to those used to study worm development are necessary. We have used 4′,6′-diamidino-2-phenylindole hydrochloride staining and quantitative polymerase chain reaction to investigate the integrity of nuclei and quantify the nuclear genome copy number of C. elegans with age. We report both systematic loss of nuclei or nuclear DNA, as well as dramatic age-related changes in nuclear genome copy number. These changes are delayed or attenuated in long-lived daf-2 mutants. We propose that these changes are important pathobiological characteristics of aging nematodes
Developmental Changes in PON1 Enzyme Activity in Young Children and Effects of PON1 Polymorphisms
BackgroundParaoxonase 1 (PON1) is an enzyme that detoxifies activated organophosphorus pesticides (OPs) and is also involved in oxidative stress pathways.ObjectivesPON1 activity in newborns is lower than in adults, but the ontogeny of PON1 activity is poorly characterized in young children. We examined the effects of age and PON1 genotype on enzyme activity in a birth cohort of Mexican-American children.MethodsWe determined three substrate-specific measures of PON1 activity in 1,143 plasma samples collected longitudinally from 458 children at five time points from birth through 7 years of age, and genotyped PON1 polymorphisms at positions 192 and -108 in these children.ResultsContrary to previous reports that PON1 activities plateau by 2 years of age, we observed an age-dependent increase in all three PON1 measures from birth through 7 years of age (p < 0.0001). The PON1(192) genotype significantly modified the effect of age on paraoxonase (POase) activity (p < 0.0001) such that increases in enzyme activity with age were influenced by the number of R alleles in a dose-dependent manner. Children with the PON1(-108CC192RR) diplotype had significantly higher mean PON1 activities and also experienced steeper increases of POase activity over time compared with children with the PON1(-108TT192QQ) diplotype.ConclusionsLower levels of the PON1 enzyme, which is involved in protection against OPs and oxidative stress, persist in young children past 2 years of age through at least 7 years of age. Future policies addressing pesticide exposure in children should take into account that the window of vulnerability to OPs in young children may last beyond infancy
DODO: an efficient orthologous genes assignment tool based on domain architectures. Domain based ortholog detection
<p>Abstract</p> <p>Background</p> <p>Orthologs are genes derived from the same ancestor gene loci after speciation events. Orthologous proteins usually have similar sequences and perform comparable biological functions. Therefore, ortholog identification is useful in annotations of newly sequenced genomes. With rapidly increasing number of sequenced genomes, constructing or updating ortholog relationship between all genomes requires lots of effort and computation time. In addition, elucidating ortholog relationships between distantly related genomes is challenging because of the lower sequence similarity. Therefore, an efficient ortholog detection method that can deal with large number of distantly related genomes is desired.</p> <p>Results</p> <p>An efficient ortholog detection pipeline DODO (DOmain based Detection of Orthologs) is created on the basis of domain architectures in this study. Supported by domain composition, which usually directly related with protein function, DODO could facilitate orthologs detection across distantly related genomes. DODO works in two main steps. Starting from domain information, it first assigns protein groups according to their domain architectures and further identifies orthologs within those groups with much reduced complexity. Here DODO is shown to detect orthologs between two genomes in considerably shorter period of time than traditional methods of reciprocal best hits and it is more significant when analyzed a large number of genomes. The output results of DODO are highly comparable with other known ortholog databases.</p> <p>Conclusions</p> <p>DODO provides a new efficient pipeline for detection of orthologs in a large number of genomes. In addition, a database established with DODO is also easier to maintain and could be updated relatively effortlessly. The pipeline of DODO could be downloaded from <url>http://140.109.42.19:16080/dodo_web/home.htm</url></p
Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer
INTRODUCTION
Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.
METHODS
More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.
RESULTS
The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.
CONCLUSIONS
With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years
Structural Similarity and Classification of Protein Interaction Interfaces
Interactions between proteins play a key role in many cellular processes.
Studying protein-protein interactions that share similar interaction interfaces
may shed light on their evolution and could be helpful in elucidating the
mechanisms behind stability and dynamics of the protein complexes. When two
complexes share structurally similar subunits, the similarity of the interaction
interfaces can be found through a structural superposition of the subunits.
However, an accurate detection of similarity between the protein complexes
containing subunits of unrelated structure remains an open problem
ApoB siRNA-induced Liver Steatosis is Resistant to Clearance by the Loss of Fatty Acid Transport Protein 5 (Fatp5)
The association between hypercholesterolemia and elevated serum apolipoprotein B (APOB) has generated interest in APOB as a therapeutic target for patients at risk of developing cardiovascular disease. In the clinic, mipomersen, an antisense oligonucleotide (ASO) APOB inhibitor, was associated with a trend toward increased hepatic triglycerides, and liver steatosis remains a concern. We found that siRNA-mediated knockdown of ApoB led to elevated hepatic triglycerides and liver steatosis in mice engineered to exhibit a human-like lipid profile. Many genes required for fatty acid synthesis were reduced, suggesting that the observed elevation in hepatic triglycerides is maintained by the cell through fatty acid uptake as opposed to fatty acid synthesis. Fatty acid transport protein 5 (Fatp5/Slc27a5) is required for long chain fatty acid (LCFA) uptake and bile acid reconjugation by the liver. Fatp5 knockout mice exhibited lower levels of hepatic triglycerides due to decreased fatty acid uptake, and shRNA-mediated knockdown of Fatp5 protected mice from diet-induced liver steatosis. Here, we evaluated if siRNA-mediated knockdown of Fatp5 was sufficient to alleviate ApoB knockdown-induced steatosis. We determined that, although Fatp5 siRNA treatment was sufficient to increase the proportion of unconjugated bile acids 100-fold, consistent with FATP5's role in bile acid reconjugation, Fatp5 knockdown failed to influence the degree, zonal distribution, or composition of the hepatic triglycerides that accumulated following ApoB siRNA treatment
The emergence of synaesthesia in a Neuronal Network Model via changes in perceptual sensitivity and plasticity
Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing
Associated Factors for Falls among the Community-Dwelling Older People Assessed by Annual Geriatric Health Examinations
BACKGROUND: Falls are very common among the older people. Nearly one-third older people living in a community fall each year. However, few studies have examined factors associated with falls in a community-dwelling population of older Taiwanese adults. OBJECTIVES: To identify the associated factors for falls during the previous 12 months among the community-dwelling Taiwanese older people receiving annual geriatric health examinations. PARTICIPANTS: People aged sixty-five years or older, living in the community, assessed by annual geriatric health examinations METHODS: 1377 community-dwellers aged ≥65 years who received annual geriatric health examinations at one hospital in northern Taiwan between March and November of 2008. They were asked about their history of falls during the year prior to their most recent health examination. RESULTS: The average age of the 1377 participants was 74.9±6.8 years, 48.9% of which were women. Three-hundred and thirteen of the participants (22.7%) had at least one fall during the previous year. Multivariate analysis showed that odds ratio for the risk of falling was 1.94 (95% CI 1.36-2.76) when the female gender group is compared with the male gender group. The adjusted odds ratios of age and waist circumference were 1.03 (95% CI 1.00-1.06) and 1.03 (95% CI 1.01-1.05) respectively. The adjusted odds ratios of visual acuity, Karnofsky scale, and serum albumin level were 0.34 (95% CI 0.15-0.76), 0.94 (95% CI 0.89-0.98), and 0.37 (95% CI 0.18-0.76) respectively. Larger waist circumference, older age, female gender, poorer visual acuity, lower score on the Karnofsky Performance Scale, and lower serum albumin level were the independent associated factors for falls. CONCLUSION: In addition to other associated factors, waist circumference should be included as a novel risk factor for falls
Statistical machines for trauma hospital outcomes research: Application to the PRospective, Observational, Multi-center Major trauma Transfusion (PROMMTT) study
Improving the treatment of trauma, a leading cause of death worldwide, is of great clinical and public health interest. This analysis introduces flexible statistical methods for estimating center-level effects on individual outcomes in the context of highly variable patient populations, such as those of the PRospective, Observational, Multi-center Major Trauma Transfusion study. Ten US level I trauma centers enrolled a total of 1,245 trauma patients who survived at least 30 minutes after admission and received at least one unit of red blood cells. Outcomes included death, multiple organ failure, substantial bleeding, and transfusion of blood products. The centers involved were classified as either large or small-volume based on the number of massive transfusion patients enrolled during the study period. We focused on estimation of parameters inspired by causal inference, specifically estimated impacts on patient outcomes related to the volume of the trauma hospital that treated them. We defined this association as the change in mean outcomes of interest that would be observed if, contrary to fact, subjects from large-volume sites were treated at small-volume sites (the effect of treatment among the treated). We estimated this parameter using three different methods, some of which use data-adaptive machine learning tools to derive the outcome models, minimizing residual confounding by reducing model misspecification. Differences between unadjusted and adjusted estimators sometimes differed dramatically, demonstrating the need to account for differences in patient characteristics in clinic comparisons. In addition, the estimators based on robust adjustment methods showed potential impacts of hospital volume. For instance, we estimated a survival benefit for patients who were treated at large-volume sites, which was not apparent in simpler, unadjusted comparisons. By removing arbitrary modeling decisions from the estimation process and concentrating on parameters that have more direct policy implications, these potentially automated approaches allow methodological standardization across similar comparativeness effectiveness studies
- …