31 research outputs found

    The Impact of Matching Vaccine Strains and Post-SARS Public Health Efforts on Reducing Influenza-Associated Mortality among the Elderly

    Get PDF
    Public health administrators do not have effective models to predict excess influenza-associated mortality and monitor viral changes associated with it. This study evaluated the effect of matching/mismatching vaccine strains, type/subtype pattern changes in Taiwan's influenza viruses, and the impact of post-SARS (severe acute respiratory syndrome) public health efforts on excess influenza-associated mortalities among the elderly. A negative binomial model was developed to estimate Taiwan's monthly influenza-associated mortality among the elderly. We calculated three winter and annual excess influenza-associated mortalities [pneumonia and influenza (P&I), respiratory and circulatory, and all-cause] from the 1999–2000 through the 2006–2007 influenza seasons. Obtaining influenza virus sequences from the months/years in which death from P&I was excessive, we investigated molecular variation in vaccine-mismatched influenza viruses by comparing hemagglutinin 1 (HA1) of the circulating and vaccine strains. We found that the higher the isolation rate of A (H3N2) and vaccine-mismatched influenza viruses, the greater the monthly P&I mortality. However, this significant positive association became negative for higher matching of A (H3N2) and public health efforts with post-SARS effect. Mean excess P&I mortality for winters was significantly higher before 2003 than after that year [mean ± S.D.: 1.44±1.35 vs. 0.35±1.13, p = 0.04]. Further analysis revealed that vaccine-matched circulating influenza A viruses were significantly associated with lower excess P&I mortality during post-SARS winters (i.e., 2005–2007) than during pre-SARS winters [0.03±0.06 vs. 1.57±1.27, p = 0.01]. Stratification of these vaccine-matching and post-SARS effect showed substantial trends toward lower elderly excess P&I mortalities in winters with either mismatching vaccines during the post-SARS period or matching vaccines during the pre-SARS period. Importantly, all three excess mortalities were at their highest in May, 2003, when inter-hospital nosocomial infections were peaking. Furthermore, vaccine-mismatched H3N2 viruses circulating in the years with high excess P&I mortality exhibited both a lower amino acid identity percentage of HA1 between vaccine and circulating strains and a higher numbers of variations at epitope B. Our model can help future decision makers to estimate excess P&I mortality effectively, select and test virus strains for antigenic variation, and evaluate public health strategy effectiveness
    corecore