326 research outputs found

    Untargeted metagenomics protocol for the diagnosis of infection from CSF and tissue from sterile sites

    Get PDF
    Metagenomic next-generation sequencing (mNGS) is an untargeted technique capable of detecting all microbial nucleic acid within a sample. This protocol outlines our wet laboratory method for mNGS of cerebrospinal fluid (CSF) specimens and tissues from sterile sites. We use this method routinely in our clinical service, processing 178 specimens over the past 2.5 years in a laboratory that adheres to ISO:15189 standards. We have successfully used this protocol to diagnose multiple cases of encephalitis and hepatitis

    Identification of 24 new microsatellite loci in the sweat bee Lasioglossum malachurum (Hymenoptera: Halictidae)

    Get PDF
    OBJECTIVE: The objective here is to identify highly polymorphic microsatellite loci for the Palaearctic sweat bee Lasioglossum malachurum. Sweat bees (Hymenoptera: Halictidae) are widespread pollinators that exhibit an unusually large range of social behaviours from non-social, where each female nests alone, to eusocial, where a single queen reproduces while the other members of the colony help to rear her offspring. They thus represent excellent models for understanding social evolution. RESULTS: 24 new microsatellite loci were successfully optimized. When amplified across 23-40 unrelated females, the number of alleles per locus ranged from 3 to 17 and the observed heterozygosities 0.45 to 0.95. Only one locus showed evidence of significant deviation from Hardy-Weinberg equilibrium. No evidence of linkage disequilibrium was found. These 24 loci will enable researchers to gain greater understanding of colony relationships within this species, an important model for the study of eusociality. Furthermore, 22 of the same loci were also successfully amplified in L. calceatum, suggesting that these loci may be useful for investigating the ecology and evolution of sweat bees in general

    Early Developmental Responses to Seedling Environment Modulate Later Plasticity to Light Spectral Quality

    Get PDF
    Correlations between developmentally plastic traits may constrain the joint evolution of traits. In plants, both seedling de-etiolation and shade avoidance elongation responses to crowding and foliage shade are mediated by partially overlapping developmental pathways, suggesting the possibility of pleiotropic constraints. To test for such constraints, we exposed inbred lines of Impatiens capensis to factorial combinations of leaf litter (which affects de-etiolation) and simulated foliage shade (which affects phytochrome-mediated shade avoidance). Increased elongation of hypocotyls caused by leaf litter phenotypically enhanced subsequent elongation of the first internode in response to low red∶far red (R∶FR). Trait expression was correlated across litter and shade conditions, suggesting that phenotypic effects of early plasticity on later plasticity may affect variation in elongation traits available to selection in different light environments

    Multiple Oncogenic Pathway Signatures Show Coordinate Expression Patterns in Human Prostate Tumors

    Get PDF
    BACKGROUND: Gene transcription patterns associated with activation of oncogenes Myc, c-Src, beta-catenin, E2F3, H-Ras, HER2, EGFR, MEK, Raf, MAPK, Akt, and cyclin D1, as well as of the cell cycle and of androgen signaling have been generated in previous studies using experimental models. It was not clear whether genes in these "oncogenic signatures" would show coordinate expression patterns in human prostate tumors, particularly as most of the signatures were derived from cell types other than prostate. PRINCIPAL FINDINGS: The above oncogenic pathway signatures were examined in four different gene expression profile datasets of human prostate tumors (representing approximately 250 patients in all), using both Q1-Q2 and one-sided Fisher's exact enrichment analysis methods. A significant fraction (approximately 5%) of genes up-regulated experimentally by Myc, c-Src, HER2, Akt, or androgen were co-expressed in human tumors with the oncogene or biomarker corresponding to the pathway signature. Genes down-regulated experimentally, however, did not show anticipated patterns of anti-enrichment in the human tumors. CONCLUSIONS: Significant subsets of the genes in these experimentally-derived oncogenic signatures are relevant to the study of human prostate cancer. Both molecular biologists and clinical researchers could focus attention on the relatively small number of genes identified here as having coordinate patterns that arise from both the experimental system and the human disease system

    Genome-Wide Analysis of Natural Selection on Human Cis-Elements

    Get PDF
    Background: It has been speculated that the polymorphisms in the non-coding portion of the human genome underlie much of the phenotypic variability among humans and between humans and other primates. If so, these genomic regions may be undergoing rapid evolutionary change, due in part to natural selection. However, the non-coding region is a heterogeneous mix of functional and non-functional regions. Furthermore, the functional regions are comprised of a variety of different types of elements, each under potentially different selection regimes. Findings and Conclusions: Using the HapMap and Perlegen polymorphism data that map to a stringent set of putative binding sites in human proximal promoters, we apply the Derived Allele Frequency distribution test of neutrality to provide evidence that many human-specific and primate-specific binding sites are likely evolving under positive selection. We also discuss inherent limitations of publicly available human SNP datasets that complicate the inference of selection pressures. Finally, we show that the genes whose proximal binding sites contain high frequency derived alleles are enriched for positive regulation of protein metabolism and developmental processes. Thus our genome-scale investigation provide

    Distinct Steps of Neural Induction Revealed by Asterix, Obelix and TrkC, Genes Induced by Different Signals from the Organizer

    Get PDF
    The amniote organizer (Hensen's node) can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4–5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct “epochs”, or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system

    Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse

    Get PDF
    Fitting generalised linear models (GLMs) with more than one predictor has become the standard method of analysis in evolutionary and behavioural research. Often, GLMs are used for exploratory data analysis, where one starts with a complex full model including interaction terms and then simplifies by removing non-significant terms. While this approach can be useful, it is problematic if significant effects are interpreted as if they arose from a single a priori hypothesis test. This is because model selection involves cryptic multiple hypothesis testing, a fact that has only rarely been acknowledged or quantified. We show that the probability of finding at least one ‘significant’ effect is high, even if all null hypotheses are true (e.g. 40% when starting with four predictors and their two-way interactions). This probability is close to theoretical expectations when the sample size (N) is large relative to the number of predictors including interactions (k). In contrast, type I error rates strongly exceed even those expectations when model simplification is applied to models that are over-fitted before simplification (low N/k ratio). The increase in false-positive results arises primarily from an overestimation of effect sizes among significant predictors, leading to upward-biased effect sizes that often cannot be reproduced in follow-up studies (‘the winner's curse’). Despite having their own problems, full model tests and P value adjustments can be used as a guide to how frequently type I errors arise by sampling variation alone. We favour the presentation of full models, since they best reflect the range of predictors investigated and ensure a balanced representation also of non-significant results

    Enzymatic capacities of metabolic fuel use in cuttlefish (Sepia officinalis) and responses to food deprivation: insight into the metabolic organization and starvation survival strategy of cephalopods

    Get PDF
    Food limitation is a common challenge for animals. Cephalopods are sensitive to starvation because of high metabolic rates and growth rates related to their "live fast, die young" life history. We investigated how enzymatic capacities of key metabolic pathways are modulated during starvation in the common cuttlefish (Sepia officinalis) to gain insight into the metabolic organization of cephalopods and their strategies for coping with food limitation. In particular, lipids have traditionally been considered unimportant fuels in cephalopods, yet, puzzlingly, many species (including cuttlefish) mobilize the lipid stores in their digestive gland during starvation. Using a comprehensive multi-tissue assay of enzymatic capacities for energy metabolism, we show that, during long-term starvation (12 days), glycolytic capacity for glucose use is decreased in cuttlefish tissues, while capacities for use of lipid-based fuels (fatty acids and ketone bodies) and amino acid fuels are retained or increased. Specifically, the capacity to use the ketone body acetoacetate as fuel is widespread across tissues and gill has a previously unrecognized capacity for fatty acid catabolism, albeit at low rates. The capacity for de novo glucose synthesis (gluconeogenesis), important for glucose homeostasis, likely is restricted to the digestive gland, contrary to previous reports of widespread gluconeogenesis among cephalopod tissues. Short-term starvation (3-5 days) had few effects on enzymatic capacities. Similar to vertebrates, lipid-based fuels, putatively mobilized from fat stores in the digestive gland, appear to be important energy sources for cephalopods, especially during starvation when glycolytic capacity is decreased perhaps to conserve available glucose

    Synchronized turbo apoptosis induced by cold-shock

    Get PDF
    In our research on the role of apoptosis in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE), we aim to evaluate the effects of early and late apoptotic cells and blebs on antigen presenting cells. This requires the in vitro generation of sufficiently large and homogeneous populations of early and late apoptotic cells. Here, we present a quick method encountered by serendipity that results in highly reproducible synchronized homogeneous apoptotic cell populations. In brief, granulocytic 32Dcl3 cells are incubated on ice for 2 h and subsequently rewarmed at 37°C. After 30–90 min at 37°C more than 80–90% of the cells become early apoptotic (Annexin V positive/propidium iodide negative). After 24 h of rewarming at 37°C 98% of the cells were late apoptotic (secondary necrotic; Annexin V positive/propidium iodide positive). Cells already formed apoptotic blebs at their cell surface after approximately 20 min at 37°C. Inter-nucleosomal chromatin cleavage and caspase activation were other characteristics of this cold-shock-induced process of apoptosis. Consequently, apoptosis could be inhibited by a caspase inhibitor. Finally, SLE-derived anti-chromatin autoantibodies showed a high affinity for apoptotic blebs generated by cold-shock. Overall, cold-shock induced apoptosis is achieved without the addition of toxic compounds or antibodies, and quickly leads to synchronized homogeneous apoptotic cell populations, which can be applied for various research questions addressing apoptosis
    corecore