2,340 research outputs found

    Individual variation in early-life telomere length and survival in a wild mammal

    Get PDF
    Individual variation in survival probability due to differential responses to early‐life environmental conditions is important in the evolution of life‐histories and senescence. A biomarker allowing quantification of such individual variation, and which links early‐life environmental conditions with survival by providing a measure of conditions experienced, is telomere length. Here, we examined telomere dynamics among 24 cohorts of European badgers (Meles meles). We found a complex cross‐sectional relationship between telomere length and age, with no apparent loss over the first 29 months, but with both decreases and increases in telomere length at older ages. Overall, we found low within‐individual consistency in telomere length across individual lifetimes. Importantly, we also observed increases in telomere length within individuals, which could not be explained by measurement error alone. We found no significant sex differences in telomere length, and provide evidence that early‐life telomere length predicts lifespan. However, while early‐life telomere length predicted survival to adulthood (≥1 year old), early‐life telomere length did not predict adult survival probability. Furthermore, adult telomere length did not predict survival to the subsequent year. These results show that the relationship between early‐life telomere length and lifespan was driven by conditions in early‐life, where early‐life telomere length varied strongly among cohorts. Our data provide evidence for associations between early‐life telomere length and individual life‐history, and highlight the dynamics of telomere length across individual lifetimes due to individuals experiencing different early‐life environments

    Epidemics in partially overlapped multiplex networks

    Get PDF
    Many real networks exhibit a layered structure in which links in each layer reflect the function of nodes on different environments. These multiple types of links are usually represented by a multiplex network in which each layer has a different topology. In real-world networks, however, not all nodes are present on every layer. To generate a more realistic scenario, we use a generalized multiplex network and assume that only a fraction qq of the nodes are shared by the layers. We develop a theoretical framework for a branching process to describe the spread of an epidemic on these partially overlapped multiplex networks. This allows us to obtain the fraction of infected individuals as a function of the effective probability that the disease will be transmitted TT. We also theoretically determine the dependence of the epidemic threshold on the fraction q>0q > 0 of shared nodes in a system composed of two layers. We find that in the limit of q0q \to 0 the threshold is dominated by the layer with the smaller isolated threshold. Although a system of two completely isolated networks is nearly indistinguishable from a system of two networks that share just a few nodes, we find that the presence of these few shared nodes causes the epidemic threshold of the isolated network with the lower propagating capacity to change discontinuously and to acquire the threshold of the other network.Comment: 13 pages, 4 figure

    Towards designing robust coupled networks

    Get PDF
    Natural and technological interdependent systems have been shown to be highly vulnerable due to cascading failures and an abrupt collapse of global connectivity under initial failure. Mitigating the risk by partial disconnection endangers their functionality. Here we propose a systematic strategy of selecting a minimum number of autonomous nodes that guarantee a smooth transition in robustness. Our method which is based on betweenness is tested on various examples including the famous 2003 electrical blackout of Italy. We show that, with this strategy, the necessary number of autonomous nodes can be reduced by a factor of five compared to a random choice. We also find that the transition to abrupt collapse follows tricritical scaling characterized by a set of exponents which is independent on the protection strategy

    Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis

    Get PDF
    Common fragile sites (cfs) are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. CFS were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Our results support the hypothesis that fragile sites serve a function; we propose that fragility is linked to a coordinated regulation of fragile genes expression.Comment: 18 pages, accepted for publication in BMC Bioinformatic

    Involving Citizen Scientists in Biodiversity Observation

    Get PDF
    The involvement of non-professionals in scientific research and environmental monitoring, termed Citizen Science (CS), has now become a mainstream approach for collecting data on earth processes, ecosystems and biodiversity. This chapter examines how CS might contribute to ongoing efforts in biodiversity monitoring, enhancing observation and recording of key species and systems in a standardised manner, thereby supporting data relevant to the Essential Biodiversity Variables (EBVs), as well as reaching key constituencies who would benefit Biodiversity Observation Networks (BONs). The design of successful monitoring or observation networks that rely on citizen observers requires a careful balancing of the two primary user groups, namely data users and data contributors (i.e., citizen scientists). To this end, this chapter identifies examples of successful CS programs as well as considering practical issues such as the reliability of the data, participant recruitment and motivation, and the use of emerging technologies

    Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance

    Get PDF
    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output

    How to share underground reservoirs

    Get PDF
    Many resources, such as oil, gas, or water, are extracted from porous soils and their exploration is often shared among different companies or nations. We show that the effective shares can be obtained by invading the porous medium simultaneously with various fluids. Partitioning a volume in two parts requires one division surface while the simultaneous boundary between three parts consists of lines. We identify and characterize these lines, showing that they form a fractal set consisting of a single thread spanning the medium and a surrounding cloud of loops. While the spanning thread has fractal dimension 1.55±0.03{1.55\pm0.03}, the set of all lines has dimension 1.69±0.02{1.69\pm0.02}. The size distribution of the loops follows a power law and the evolution of the set of lines exhibits a tricritical point described by a crossover with a negative dimension at criticality

    Mother Knows Best: Dominant Females Determine Offspring Dispersal in Red Foxes (Vulpes vulpes)

    Get PDF
    Background: Relatedness between group members is central to understanding the causes of animal dispersal. In many group-living mammals this can be complicated as extra-pair copulations result in offspring having varying levels of relatedness to the dominant animals, leading to a potential conflict between male and female dominants over offspring dispersal strategies. To avoid resource competition and inbreeding, dominant males might be expected to evict unrelated males and related females, whereas the reverse strategy would be expected for dominant females. Methodology/Principal Findings: We used microsatellites and long-term data from an urban fox (Vulpes vulpes) population to compare dispersal strategies between offspring with intra- and extra-group fathers and mothers of differing social status in red foxes. Relatedness to the dominant male had no effect on dispersal in offspring of either sex, whereas there was a strong effect of relatedness to resident females on offspring dispersal independent of population density. Males with dominant mothers dispersed significantly more often than males with subordinate mothers, whereas dispersing females were significantly more likely to have subordinate mothers compared to philopatric females. Conclusions/Significance: This is the first study to demonstrate that relatedness to resident females is important in juvenile dispersal in group-living mammals. Male dispersal may be driven by inbreeding avoidance, whereas female dispersal appears to be influenced by the fitness advantages associated with residing with the same-sex dominant parent. Selection pressure for paternal influence on offspring dispersal is low due to the limited costs associated with retaining unrelated males and the need for alternative inbreeding avoidance mechanisms between the dominant male and his female offspring. These findings have important implications for the evolution of dispersal and group living in social mammals, and our understanding of a key biological process.peerReviewe

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures
    corecore