2,205 research outputs found

    Ecological IVIS design : using EID to develop a novel in-vehicle information system

    Get PDF
    New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ‘green’ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ‘Foot-LITE’ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field

    Habitat suitability assessment of constructed wetlands for the smooth newt (Lissotriton vulgaris [Linnaeus, 1758]): A comparison with natural wetlands

    Get PDF
    Given the current decline of natural wetlands worldwide and the consequent negative impacts on amphibians, wetlands constructed for the treatment of wastewaters have the potential to play a role in the protection of these animals. However, there is a paucity of information regarding the value of constructed wetlands (CWs) to amphibians, particularly relating to the terrestrial phase of their life-cycle. This study compares the terrestrial habitats of natural wetlands (NWs) and CWs as refuges for the smooth newt (Lissotriton vulgaris, [L., 1758]) with the aim of developing recommendations for CWs (both new and existing) to enhance their usefulness as newt-friendly habitats. Terrestrial habitats surrounding NWs and CWs were mapped using ArcGIS. Potential barriers to newt movement in addition to the presence of features such as wood or stone which could act as potential newt refuges were also mapped. Natural wetlands had significantly more terrestrial habitat types than CWs and while woodlands at both wetland types were most likely to contain features of benefit to newts, terrestrial habitats of NWs contained more features compared to those of CWs. The application of a Habitat Suitability Index, which assesses the likelihood of the presence of newts, resulted in seven of eight NWs compared to only two of eight CWs receiving “good” scores, the lower scores for CWs being due primarily to the presence of a barrier to newt movement. Recommendations for enhancing the design and management of CWs for smooth newts include less intensive ground maintenance, reduction of barriers to newt movement, judicious planting of suitable trees or shrubs and the provision of additional refuges such as wood or stone

    A complex network approach to structural inequality of educational deprivation in a Latin American country

    Get PDF
    To guarantee the human right to education established by the fourth UNESCO’s Sustainable Development Goal, a deep understanding of a big set of non-linear relationships at different scales is need it, as well as to know how they impact on learning outcomes. In doing so, current methods do not provide enough evidence about interactions and, for this reason, some researchers have proposed to model education as a complex system for considering all interactions at individual level, as well as using computer simulation and network analysis to provide a comprehensive look at the educational processes, as well as to predict the outcomes of different public policies. The highlight of this paper is modeling the structure of the inequality of a national educational system as a complex network from learning outcomes and socio-economic, ethnicity, rurality and type of school funding, for providing a better understanding and measuring of the educational gaps. This new approach might help to integrate insights improving the theoretical framework, as well as to provide valuable information about non-trivial relationships between educational and non-educational variables in order to help policymakers to implement effective solutions for the educational challenge of ensuring inclusive and equitable education.info:eu-repo/semantics/acceptedVersio

    A rocky planet transiting a nearby low-mass star

    Full text link
    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at http://dx.doi.org/10.1038/nature15762. This is the authors' version of the manuscrip

    Dasatinib inhibits CXCR4 signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12

    Get PDF
    Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies

    Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia

    Get PDF
    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, underconstruction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments

    Modularity and Intrinsic Evolvability of Hsp90-Buffered Change

    Get PDF
    Hsp90 controls dramatic phenotypic transitions in a wide array of morphological features of many organisms. The genetic-background dependence of specific abnormalities and their response to laboratory selection suggested Hsp90 could be an ‘evolutionary capacitor’, allowing developmental variation to accumulate as neutral alleles under normal conditions and manifest selectable morphological differences during environmental stress. The relevance of Hsp90-buffered variation for evolution has been most often challenged by the idea that large morphological changes controlled by Hsp90 are unconditionally deleterious. To address this issue, we tested an Hsp90-buffered abnormality in Drosophila for unselected pleiotropic effects and correlated fitness costs. Up to 120-fold differences in penetrance among six highly related selection lines, started from an initially small number of flies and rapidly selected for and against a deformed eye trait (dfe), did not translate into measurable differences in any of several tests of viability, lifespan or competitive fitness. Nor were 17 dfe Quantitative Trait Loci (QTL) associated with fitness effects in over 1,400 recombinant lines. Our ability to detect measurable effects of inbreeding, media environment and the white mutation in the selection line backgrounds independent of dfe penetrance suggests that, within the limitations of laboratory tests of fitness, this large morphological change controlled by Hsp90 was selectable independent of strong, correlated and unconditionally deleterious effects—abundant, polygenic variation hidden by Hsp90 allows potentially deleterious alleles to be readily replaced during selection by less deleterious alleles with similar phenotypic effects. Hsp90 links environmental stress with the expression of developmental variation controlling unprecedented morphological plasticity. As outlined here and in the companion paper of this issue, the complex genetic architecture of Hsp90-buffered variation supports a remarkable modularity of Hsp90 effects on quantitative and qualitative phenotypes, consistent with the ‘Hsp90 capacitor hypothesis’ and standard quantitative genetic models of threshold traits
    corecore