29 research outputs found
Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
Developing drug molecules for therapy with carbon monoxide
The use of Carbon Monoxide (CO) as a therapeutic agent has already been tested in human clinical trials. Pre-clinically, CO gas administration proved beneficial in animal models of various human diseases. However, the use of gaseous CO faces serious obstacles not the least being its well-known toxicity. To fully realise the promise of CO as a therapeutic agent, it is key to find novel avenues for CO delivery to diseased tissues in need of treatment, without concomitant formation of elevated, toxic blood levels of carboxyhemoglobin (COHb). CO-releasing molecules (CO-RMs) have the potential to constitute safe treatments if CO release in vivo can be controlled in a spatial and temporal manner. It has already been demonstrated in animals that CO-RMs can release CO and mimic the therapeutic effects of gaseous CO. While demonstrating the principle of treatment with CO-RMs, these first generation compounds are not suitable for human use. This tutorial review summarises the biological and chemical behaviour of CO, the current status of CO-RM development, and derives principles for the creation of the next generation of CO-RMs for clinical applications in humans
LSD and 9,10-dihydro-LSD Analyses in Street Drug Blotter Samples via Easy Ambient Sonic-Spray Ionization MassSpectrometry (EASI-MS)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Normally, the identification of the LSD drug is performed by forensic laboratories, using the Ehrlich spot test. However, this is a nonspecific analysis. Additionally, the Brazilian Federal Police has identified the presence of a new compound in seized blotters: 9,10-dihydro-LSD, an uncontrolled substance. In this work, easy ambient sonic-spray ionization mass spectrometry in the positive ion mode, EASI(+)-MS, was used to characterize LSD and 9,10-dihydro-LSD compositions directly from the surface of blotters. The presence of LSD in the seized blotter samples were also confirmed via high-performance liquid chromatography with ultraviolet detector. In a set of 41 blotters analyzed by EASI(+)-MS, 28 showed positive results for LSD, seven for 9,10-dihydro-LSD, and another six samples showed negative results for both LSD and 9,10-dihydro-LSD. The combination of thin layer chromatography with EASI-MS also demonstrated to be a relatively simple and powerful screening tool for forensic analysis of street drugs.57513071312Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)FINEPFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2009/07168-9]CNPq [576183/2008-3]FAPERJ [E-26/190.060/2008]FAPEMIG [PRONEX 479/2007