2,690 research outputs found

    Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    Get PDF
    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~5.8‰ vs. expected values of ~6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites. © 2011 Elsevier B.V

    Persistent dysregulation of DNA methylation in cells with arsenic-induced genomic instability

    Get PDF
    The mechanisms by which arsenic-induced genomic instability is initiated and maintained are poorly understood. In previous studies long-term progression of chromosomal instability was typified by increasing aneuploidy in Chinese hamster V79 and human keratinocyte cells treated with arsenite for a 24 hr exposure period followed by growth in arsenic-free medium for 40-120 cell generations. In the current study the role of progressive DNA methylation changes was evaluated in long-term cell cultures after brief arsenite treatments as above. We have found altered genomic methylation patterns in cells that were briefly exposed to arsenic with evidence for widespread dysregulation of CpG methylation that persists for many population doublings after the treatment. In V79 cell populations, progressive aneuploidy increases were notable by 50 cell generations after a 24 hr exposure to 1-10 uM arsenite. Dicentric chromosomes and/or telomeric associations, as well as complex chromosome rearrangements, occurred by 90 cells generations post treatment; and mutator and transformed phenotypes began to appear thereafter. This increasing genomic instability correlated with modifications of global DNA methylation patterns in V79 cells evaluated by 5-methylcytosine antibody binding and MeSAP-PCR. The results show that short-term exposure to arsenite induced an apparent genome hypomethylating effect within a short time after exposure. In identical protocols using human HaCaT keratinocytes exposed to low doses of arsenite (0.05-0.1 M) for 24 hr, genomewide methylation levels were measured by LINE1 pyrosequencing and gene-specific methylation status was assessed by Methylation-Specific-PCR for up to 40 generations post exposure. Global demethylation following treatment was supported by preliminary LINE-1 studies. Moreover, the study of gene-specific MSP and determination of expression levels by RT-PCR of several genes (p16, hMLH1, hMSH2, DNMT1, DNMT3a and DNMT3b) demonstrated that hMSH2 gene was epigenetically regulated by arsenite and that down regulation of DNMT3a and DNMT3b genes occurred in an arsenite dose-dependent manner. The results reported here demonstrate that acute 24 hr arsenic exposure promptly induces genome wide DNA hypomethylation, and support the hypothesis that the cells continue to undergo epigenetic reprogramming both at the gene and genomic levels in the absence of further arsenite treatment; thus likely contributing to long-lasting genomic instability that manifests as aberrant chromosomal, mutator and cell transformation effects

    Absence of diabetic retinopathy in a patient who has had diabetes mellitus for 69 years, and inadequate glycemic control: case presentation

    Get PDF
    The main risk factors for the development and progression of diabetic retinopathy (DR) are chronic hyperglycemia, disease duration and systemic blood pressure. So far chronic hyperglycemia is the strongest evidence concerning the risk of developing DR. However there are some patients with poor metabolic control who never develop this diabetic complication. We present a case of a 73-year-old woman with type 1 diabetes mellitus, diagnosed 69 years ago. The patient is 73 years old, with no evidence of DR, despite poor glycemic control and several risk factors for DR. This case suggests the presence of a possible protection factor, which could be genetic

    Data and programming code from the studies on the learning curve for radical prostatectomy

    Get PDF
    Our group analyzed a multi-institutional data set to address the question of how the outcomes of surgery for prostate cancer are affected by surgeon-specific factors. The cohort consists of 9076 patients treated by open radical prostatectomy at one of four US academic institutions 1987 - 2003. The primary analyses focused on 7765 patients without neoadjuvant therapy. The most well-known finding is that of a surgical "learning curve", with rates of prostate cancer cure strongly dependent on surgeon experience. In this "data note", we provide the raw data set, as well as well-annotated programming code for the main analyses. Data include markers of cancer severity (stage, grade and prostate-specific antigen level), cancer outcome, and surgeon variables such as training and experience

    Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science

    Get PDF
    Abstract Background Many interventions found to be effective in health services research studies fail to translate into meaningful patient care outcomes across multiple contexts. Health services researchers recognize the need to evaluate not only summative outcomes but also formative outcomes to assess the extent to which implementation is effective in a specific setting, prolongs sustainability, and promotes dissemination into other settings. Many implementation theories have been published to help promote effective implementation. However, they overlap considerably in the constructs included in individual theories, and a comparison of theories reveals that each is missing important constructs included in other theories. In addition, terminology and definitions are not consistent across theories. We describe the Consolidated Framework For Implementation Research (CFIR) that offers an overarching typology to promote implementation theory development and verification about what works where and why across multiple contexts. Methods We used a snowball sampling approach to identify published theories that were evaluated to identify constructs based on strength of conceptual or empirical support for influence on implementation, consistency in definitions, alignment with our own findings, and potential for measurement. We combined constructs across published theories that had different labels but were redundant or overlapping in definition, and we parsed apart constructs that conflated underlying concepts. Results The CFIR is composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Eight constructs were identified related to the intervention (e.g., evidence strength and quality), four constructs were identified related to outer setting (e.g., patient needs and resources), 12 constructs were identified related to inner setting (e.g., culture, leadership engagement), five constructs were identified related to individual characteristics, and eight constructs were identified related to process (e.g., plan, evaluate, and reflect). We present explicit definitions for each construct. Conclusion The CFIR provides a pragmatic structure for approaching complex, interacting, multi-level, and transient states of constructs in the real world by embracing, consolidating, and unifying key constructs from published implementation theories. It can be used to guide formative evaluations and build the implementation knowledge base across multiple studies and settings.http://deepblue.lib.umich.edu/bitstream/2027.42/78272/1/1748-5908-4-50.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/2/1748-5908-4-50-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/3/1748-5908-4-50-S3.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/4/1748-5908-4-50-S4.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/5/1748-5908-4-50.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78272/6/1748-5908-4-50-S2.PDFPeer Reviewe

    Shaping bursting by electrical coupling and noise

    Full text link
    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic \beta-cells, which in isolation are known to exhibit irregular spiking. At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity or small total effective resistance are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models
    corecore