4,120 research outputs found
Compact Stars - How Exotic Can They Be?
Strong interaction physics under extreme conditions of high temperature
and/or density is of central interest in modern nuclear physics for
experimentalists and theorists alike. In order to investigate such systems,
model approaches that include hadrons and quarks in a unified approach, will be
discussed. Special attention will be given to high-density matter as it occurs
in neutron stars. Given the current observational limits for neutron star
masses, the properties of hyperonic and hybrid stars will be determined. In
this context especially the question of the extent, to which exotic particles
like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held
in Boppard (Germany), May 201
Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway
Cerebrospinal fluid (CSF) includes conserved factors whose function is largely unexplored. To assess the role of CSF during embryonic development, CSF was repeatedly drained from embryonic zebrafish brain ventricles soon after their inflation. Removal of CSF increased cell death in the diencephalon, indicating a survival function. Factors within the CSF are required for neuroepithelial cell survival as injected mouse CSF but not artificial CSF could prevent cell death after CSF depletion. Mass spectrometry analysis of the CSF identified retinol binding protein 4 (Rbp4), which transports retinol, the precursor to retinoic acid (RA). Consistent with a role for Rbp4 in cell survival, inhibition of Rbp4 or RA synthesis increased neuroepithelial cell death. Conversely, ventricle injection of exogenous human RBP4 plus retinol, or RA alone prevented cell death after CSF depletion. Zebrafish rbp4 is highly expressed in the yolk syncytial layer, suggesting Rbp4 protein and retinol/RA precursors can be transported into the CSF from the yolk. In accord with this suggestion, injection of human RBP4 protein into the yolk prevents neuroepithelial cell death in rbp4 loss-of-function embryos. Together, these data support the model that Rbp4 and RA precursors are present within the CSF and used for synthesis of RA, which promotes embryonic neuroepithelial survival
Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings
We study how general two Higgs doublet models can be constrained by
considering their properties under renormalization group evolution of the
Yukawa couplings. We take into account both the appearance of a Landau pole as
well as off-diagonal Yukawa couplings leading to flavour changing neutral
currents in violation with experimental constraints at the electroweak scale.
We find that the latter condition can be used to limit the amount of Z2
symmetry breaking allowed in a given model.Comment: 28 pages, 10 figures, added discussion of evolution from high to low
scales, to be published in JHE
New Fe-based superconductors: properties relevant for applications
Less than two years after the discovery of high temperature superconductivity
in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe
layers (1111, 122, 11, 111) are available. They share several characteristics
with cuprate superconductors that compromise easy applications, such as the
layered structure, the small coherence length, and unconventional pairing, On
the other hand the Fe-based superconductors have metallic parent compounds, and
their electronic anisotropy is generally smaller and does not strongly depend
on the level of doping, the supposed order parameter symmetry is s wave, thus
in principle not so detrimental to current transmission across grain
boundaries. From the application point of view, the main efforts are still
devoted to investigate the superconducting properties, to distinguish intrinsic
from extrinsic behaviours and to compare the different families in order to
identify which one is the fittest for the quest for better and more practical
superconductors. The 1111 family shows the highest Tc, huge but also the most
anisotropic upper critical field and in-field, fan-shaped resistive transitions
reminiscent of those of cuprates, while the 122 family is much less anisotropic
with sharper resistive transitions as in low temperature superconductors, but
with about half the Tc of the 1111 compounds. An overview of the main
superconducting properties relevant to applications will be presented. Upper
critical field, electronic anisotropy parameter, intragranular and
intergranular critical current density will be discussed and compared, where
possible, across the Fe-based superconductor families
Jugular venous reflux and white matter abnormalities in Alzheimer's disease: a pilot study.
To determine whether jugular venous reflux (JVR) is associated with cerebral white matter changes (WMCs) in individuals with Alzheimer's disease (AD), we studied 12 AD patients 24 mild cognitive impairment (MCI) patients, and 17 elderly age- and gender-matched controls. Duplex ultrasonography and 1.5T MRI scanning was applied to quantify cerebral WMCs [T2 white matter (WM) lesion and dirty-appearing-white-matter (DAWM)]. Subjects with severe JVR had more frequently hypertension (p = 0.044), more severe WMC, including increased total (p = 0.047) and periventricular DAWM volumes (p = 0.008), and a trend for increased cerebrospinal fluid volumes (p = 0.067) compared with the other groups. A significantly decreased (65.8%) periventricular DAWM volume (p = 0.01) in the JVR-positive AD individuals compared with their JVR-negative counterparts was detected. There was a trend for increased periventricular and subcortical T2 WMC lesion volumes in the JVR-positive AD individuals compared with their JVR-negative counterparts (p = 0.073). This phenomenon was not observed in either the control or MCI groups. In multiple regression analysis, the increased periventricular WMC lesion volume and decreased DAWM volume resulted in 85.7% sensitivity and 80% specificity for distinguishing between JVR-positive and JVR-negative AD patients. These JVR-WMC association patterns were not seen in the control and MCI groups. Therefore, this pilot study suggests that there may be an association between JVR and WMCs in AD patients, implying that cerebral venous outflow impairment might play a role in the dynamics of WMCs formation in AD patients, particularly in the periventricular regions. Further longitudinal studies are needed to confirm and validate our findings
General Analysis of Antideuteron Searches for Dark Matter
Low energy cosmic ray antideuterons provide a unique low background channel
for indirect detection of dark matter. We compute the cosmic ray flux of
antideuterons from hadronic annihilations of dark matter for various Standard
Model final states and determine the mass reach of two future experiments
(AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron
detection over current bounds. We consider generic models of scalar, fermion,
and massive vector bosons as thermal dark matter, describe their basic features
relevant to direct and indirect detection, and discuss the implications of
direct detection bounds on models of dark matter as a thermal relic. We also
consider specific dark matter candidates and assess their potential for
detection via antideuterons from their hadronic annihilation channels. Since
the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we
find that antideuterons can be a good indirect detection channel for a variety
of thermal relic electroweak scale dark matter candidates, even when the rate
for direct detection is highly suppressed.Comment: 44 pages, 15 Figure
Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways
Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host.
Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior.
Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context
Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized
Understanding protein structure is of crucial importance in science, medicine
and biotechnology. For about two decades, knowledge based potentials based on
pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been
center stage in the prediction and design of protein structure and the
simulation of protein folding. However, the validity, scope and limitations of
these potentials are still vigorously debated and disputed, and the optimal
choice of the reference state -- a necessary component of these potentials --
is an unsolved problem. PMFs are loosely justified by analogy to the reversible
work theorem in statistical physics, or by a statistical argument based on a
likelihood function. Both justifications are insightful but leave many
questions unanswered. Here, we show for the first time that PMFs can be seen as
approximations to quantities that do have a rigorous probabilistic
justification: they naturally arise when probability distributions over
different features of proteins need to be combined. We call these quantities
reference ratio distributions deriving from the application of the reference
ratio method. This new view is not only of theoretical relevance, but leads to
many insights that are of direct practical use: the reference state is uniquely
defined and does not require external physical insights; the approach can be
generalized beyond pairwise distances to arbitrary features of protein
structure; and it becomes clear for which purposes the use of these quantities
is justified. We illustrate these insights with two applications, involving the
radius of gyration and hydrogen bonding. In the latter case, we also show how
the reference ratio method can be iteratively applied to sculpt an energy
funnel. Our results considerably increase the understanding and scope of energy
functions derived from known biomolecular structures
Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model
The alignment in flavour space of the Yukawa matrices of a general
two-Higgs-doublet model results in the absence of tree-level flavour-changing
neutral currents. In addition to the usual fermion masses and mixings, the
aligned Yukawa structure only contains three complex parameters, which are
potential new sources of CP violation. For particular values of these three
parameters all known specific implementations of the model based on discrete
Z_2 symmetries are recovered. One of the most distinctive features of the
two-Higgs-doublet model is the presence of a charged scalar. In this work, we
discuss its main phenomenological consequences in flavour-changing processes at
low energies and derive the corresponding constraints on the parameters of the
aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP.
References added. Discussion slightly extended. Conclusions unchange
Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis
Objectives: Abdominal functional electrical stimulation (abdominal FES) is the application of a train of electrical pulses to the abdominal muscles, causing them to contract. Abdominal FES has been used as a neuroprosthesis to acutely augment respiratory function and as a rehabilitation tool to achieve a chronic increase in respiratory function after abdominal FES training, primarily focusing on patients with spinal cord injury (SCI). This study aimed to review the evidence surrounding the use of abdominal FES to improve respiratory function in both an acute and chronic manner after SCI.
Settings: A systematic search was performed on PubMed, with studies included if they applied abdominal FES to improve respiratory function in patients with SCI.
Methods: Fourteen studies met the inclusion criteria (10 acute and 4 chronic). Low participant numbers and heterogeneity across studies reduced the power of the meta-analysis. Despite this, abdominal FES was found to cause a significant acute improvement in cough peak flow, whereas forced exhaled volume in 1 s approached significance. A significant chronic increase in unassisted vital capacity, forced vital capacity and peak expiratory flow was found after abdominal FES training compared with baseline.
Conclusions: This systematic review suggests that abdominal FES is an effective technique for improving respiratory function in both an acute and chronic manner after SCI. However, further randomised controlled trials, with larger participant numbers and standardised protocols, are needed to fully establish the clinical efficacy of this technique
- …
