3,565 research outputs found

    Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway

    Get PDF
    Cerebrospinal fluid (CSF) includes conserved factors whose function is largely unexplored. To assess the role of CSF during embryonic development, CSF was repeatedly drained from embryonic zebrafish brain ventricles soon after their inflation. Removal of CSF increased cell death in the diencephalon, indicating a survival function. Factors within the CSF are required for neuroepithelial cell survival as injected mouse CSF but not artificial CSF could prevent cell death after CSF depletion. Mass spectrometry analysis of the CSF identified retinol binding protein 4 (Rbp4), which transports retinol, the precursor to retinoic acid (RA). Consistent with a role for Rbp4 in cell survival, inhibition of Rbp4 or RA synthesis increased neuroepithelial cell death. Conversely, ventricle injection of exogenous human RBP4 plus retinol, or RA alone prevented cell death after CSF depletion. Zebrafish rbp4 is highly expressed in the yolk syncytial layer, suggesting Rbp4 protein and retinol/RA precursors can be transported into the CSF from the yolk. In accord with this suggestion, injection of human RBP4 protein into the yolk prevents neuroepithelial cell death in rbp4 loss-of-function embryos. Together, these data support the model that Rbp4 and RA precursors are present within the CSF and used for synthesis of RA, which promotes embryonic neuroepithelial survival

    Jugular venous reflux and white matter abnormalities in Alzheimer's disease: a pilot study.

    Get PDF
    To determine whether jugular venous reflux (JVR) is associated with cerebral white matter changes (WMCs) in individuals with Alzheimer's disease (AD), we studied 12 AD patients 24 mild cognitive impairment (MCI) patients, and 17 elderly age- and gender-matched controls. Duplex ultrasonography and 1.5T MRI scanning was applied to quantify cerebral WMCs [T2 white matter (WM) lesion and dirty-appearing-white-matter (DAWM)]. Subjects with severe JVR had more frequently hypertension (p = 0.044), more severe WMC, including increased total (p = 0.047) and periventricular DAWM volumes (p = 0.008), and a trend for increased cerebrospinal fluid volumes (p = 0.067) compared with the other groups. A significantly decreased (65.8%) periventricular DAWM volume (p = 0.01) in the JVR-positive AD individuals compared with their JVR-negative counterparts was detected. There was a trend for increased periventricular and subcortical T2 WMC lesion volumes in the JVR-positive AD individuals compared with their JVR-negative counterparts (p = 0.073). This phenomenon was not observed in either the control or MCI groups. In multiple regression analysis, the increased periventricular WMC lesion volume and decreased DAWM volume resulted in 85.7% sensitivity and 80% specificity for distinguishing between JVR-positive and JVR-negative AD patients. These JVR-WMC association patterns were not seen in the control and MCI groups. Therefore, this pilot study suggests that there may be an association between JVR and WMCs in AD patients, implying that cerebral venous outflow impairment might play a role in the dynamics of WMCs formation in AD patients, particularly in the periventricular regions. Further longitudinal studies are needed to confirm and validate our findings

    Compact Stars - How Exotic Can They Be?

    Full text link
    Strong interaction physics under extreme conditions of high temperature and/or density is of central interest in modern nuclear physics for experimentalists and theorists alike. In order to investigate such systems, model approaches that include hadrons and quarks in a unified approach, will be discussed. Special attention will be given to high-density matter as it occurs in neutron stars. Given the current observational limits for neutron star masses, the properties of hyperonic and hybrid stars will be determined. In this context especially the question of the extent, to which exotic particles like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held in Boppard (Germany), May 201

    Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings

    Full text link
    We study how general two Higgs doublet models can be constrained by considering their properties under renormalization group evolution of the Yukawa couplings. We take into account both the appearance of a Landau pole as well as off-diagonal Yukawa couplings leading to flavour changing neutral currents in violation with experimental constraints at the electroweak scale. We find that the latter condition can be used to limit the amount of Z2 symmetry breaking allowed in a given model.Comment: 28 pages, 10 figures, added discussion of evolution from high to low scales, to be published in JHE

    New Fe-based superconductors: properties relevant for applications

    Full text link
    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length, and unconventional pairing, On the other hand the Fe-based superconductors have metallic parent compounds, and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, the supposed order parameter symmetry is s wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviours and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest Tc, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates, while the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the Tc of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families

    Asymptotic Dirichlet Problem for A-Harmonic Functions on Manifolds with Pinched Curvature

    Get PDF
    We study the asymptotic Dirichlet problem for -harmonic functions on a Cartan-Hadamard manifold whose radial sectional curvatures outside a compact set satisfy an upper bound and a pointwise pinching condition for some constants epsilon > 0 and C (K) a 1, where P and are any 2-dimensional subspaces of T (x) M containing the (radial) vector acr(x) and r(x) = d(o, x) is the distance to a fixed point o a M. We solve the asymptotic Dirichlet problem with any continuous boundary data . The results apply also to the Laplacian and p-Laplacian, as special cases.Peer reviewe

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure

    Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC

    Full text link
    The Cryogenic Dark Matter Search recently announced the observation of two signal events with a 77% confidence level. Although statistically inconclusive, it is nevertheless suggestive. In this work we present a model-independent analysis on the implication of a positive signal in dark matter scattering off nuclei. Assuming the interaction between (scalar, fermion or vector) dark matter and the standard model induced by unknown new physics at the scale Λ\Lambda, we examine various dimension-6 tree-level induced operators and constrain them using the current experimental data, e.g. the WMAP data of the relic abundance, CDMS II direct detection of the spin-independent scattering, and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC reach is also explored

    Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    Get PDF
    Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context
    • …
    corecore