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Abstract. We study the asymptotic Dirichlet problem for A-harmonic func-

tions on a Cartan-Hadamard manifold whose radial sectional curvatures out-
side a compact set satisfy an upper bound

K(P ) ≤ −
1 + ε

r(x)2 log r(x)

and a pointwise pinching condition

|K(P )| ≤ CK |K(P ′)|
for some constants ε > 0 and CK ≥ 1, where P and P ′ are any 2-dimensional

subspaces of TxM containing the (radial) vector ∇r(x) and r(x) = d(o, x) is

the distance to a fixed point o ∈M . We solve the asymptotic Dirichlet problem
with any continuous boundary data f ∈ C(∂∞M). The results apply also to

the Laplacian and p-Laplacian, 1 < p <∞, as special cases.

1. Introduction

In this paper we are interested in the asymptotic Dirichlet problem for A-harmonic
functions on a Cartan-Hadamard manifold M of dimension n ≥ 2. We recall that a
Cartan-Hadamard manifold is a simply connected complete Riemannian manifold
with non-positive sectional curvature. Since the exponential map expo : ToM →M
is a diffeomorphism for every point o ∈M , it follows that M is diffeomorphic to Rn.
One can define an asymptotic boundary ∂∞M of M as the set of all equivalence
classes of unit speed geodesic rays on M . Then the compactification of M is given
by M̄ = M ∪ ∂∞M equipped with the cone topology. We also notice that M̄ is
homeomorphic to the closed Euclidean unit ball; for details, see Section 2 and [8].

The asymptotic Dirichlet problem on M for some operator Q is the following:
Given a function f ∈ C(∂∞M) does there exist a (unique) function u ∈ C(M̄)
such that Q[u] = 0 on M and u|∂∞M = f? We will consider this problem for the
A-harmonic operator (of type p)

Q[u] = −div Ax(∇u), (1.1)

where A : TM → TM is subject to certain conditions; for instance 〈A(V ), V 〉 ≈
|V |p, 1 < p < ∞, and A(λV ) = λ|λ|p−2A(V ) for all λ ∈ R \ {0} (see Section 2.3
for the precise definition). A function u is said to be A-harmonic if it satisfies the
equation

− div Ax(∇u) = 0. (1.2)

The asymptotic Dirichlet problem on Cartan-Hadamard manifolds has been
solved for various operators and under various assumptions on the manifold. The
first result for this problem was due to Choi [6] when he solved the asymptotic
Dirichlet problem for the Laplacian assuming that the sectional curvature has a
negative upper bound KM ≤ −a2 < 0, and that any two points at infinity can be
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separated by convex neighborhoods. Anderson [1] showed that such convex sets ex-
ist provided the sectional curvature of the manifold satisfies −b2 ≤ KM ≤ −a2 < 0.
We point out that Sullivan [13] solved independently the asymptotic Dirichlet prob-
lem for the Laplacian under the same curvature assumptions but using probabilistic
arguments. Cheng [5] was the first to solve the problem for the Laplacian under
the same type of pointwise pinching assumption for the sectional curvatures as we
consider in this paper. Later the asymptotic Dirichlet problem has been generalized
for p-harmonic and A-harmonic functions and for minimal graph equation under
various curvature assumptions, see [2], [3], [10], [11], [14], [15].

In [14] Vähäkangas had exactly the same pinching condition but with weaker up-
per bound for the sectional curvatures. Namely, he solved the asymptotic Dirichlet
problem assuming the pointwise pinching condition and

K(P ) ≤ −φ(φ− 1)

r(x)2
,

where φ > 1 is constant. In [2] the authors showed that, with these stronger
assumptions, the solvability result holds also for the minimal graph equation.

In this paper we will use similar techniques as in [2], [3] and [15]. Our main
theorem is the following.

Theorem 1.3. Let M be a Cartan-Hadamard manifold of dimension n ≥ 2. As-
sume that

K(P ) ≤ − 1 + ε

r(x)2 log r(x)
, (1.4)

for some constant ε > 0, where K(P ) is the sectional curvature of any two-
dimensional subspace P ⊂ TxM containing the radial vector ∇r(x), with x ∈
M \B(o,R0). Suppose also that there exists a constant CK <∞ such that

|K(P )| ≤ CK |K(P ′)| (1.5)

whenever x ∈ M \ B(o,R0) and P, P ′ ⊂ TxM are two-dimensional subspaces con-
taining the radial vector ∇r(x). Then the asymptotic Dirichlet problem for the A-
harmonic equation (1.2) is uniquely solvable for any boundary data f ∈ C(∂∞M)
provided that 1 < p < nα/β.

In the case of usual Laplacian we have α = β = 1 and p = 2. Hence we obtain
the following special case.

Corollary 1.6. Let M be a Cartan-Hadamard manifold of dimension n ≥ 3 and
assume that the assumptions (1.4) and (1.5) are satisfied. Then the asymptotic
Dirichlet problem for the Laplace operator is uniquely solvable for any boundary
data f ∈ C(∂∞M).

We close this introduction by commenting that our upper bound (1.4) is in a
sense optimal, since assuming

K(P ) ≥ − 1

r(x)2 log r(x)

and considering A-harmonic operator of type p ≥ n, implies that M is p-parabolic
i.e. every bounded A-harmonic function (of type p) is constant. For more detailed
discussion, see e.g. [3].

2. Preliminaries

2.1. Cartan-Hadamard manifolds. Recall that a Cartan-Hadamard manifold is
a complete and simply connected Riemannian manifold with non-positive sectional
curvature. Let M be a Cartan-Hadamard manifold and ∂∞M the sphere at infinity,
then we denote M̄ = M ∪ ∂∞M . The sphere at infinity is defined as the set of all
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equivalence classes of unit speed geodesic rays in M ; two such rays γ1 and γ2 are
equivalent if

sup
t≥0

d
(
γ1(t), γ2(t)

)
<∞.

The equivalence class of γ is denoted by γ(∞). For each x ∈ M and y ∈ M̄ \ {x}
there exists a unique unit speed geodesic γx,y : R → M such that γx,y(0) = x and
γx,y(t) = y for some t ∈ (0,∞]. For x ∈M and y, z ∈ M̄ \ {x} we denote by

^x(y, z) = ^(γ̇x,y0 , γ̇x,z0 )

the angle between vectors γ̇x,y0 and γ̇x,z0 in TxM . If v ∈ TxM \ {0}, α > 0, and
R > 0, we define a cone

C(v, α) = {y ∈ M̄ \ {x} : ^(v, γ̇x,y0 ) < α}
and a truncated cone

T (v, α,R) = C(v, α) \ B̄(x,R).

All cones and open balls in M form a basis for the cone topology in M̄ . With this
topology M̄ is homeomorphic to the closed unit ball B̄n ⊂ Rn and ∂∞M to the
unit sphere Sn−1 = ∂Bn. For detailed study on the cone topology, see [8].

Let us recall that the local Sobolev inequality holds on any Cartan-Hadamard
manifold M . More precisely, there exist constants rS > 0 and CS <∞ such that(∫

B

|η|n/(n−1)

)(n−1)/n

≤ CS
∫
B

|∇η| (2.1)

holds for every ball B = B(x, rS) ⊂ M and every function η ∈ C∞0 (B). This
inequality can be obtained e.g. from Croke’s estimate of the isoperimetric constant,
see [4] and [7].

2.2. Jacobi equation. If k : [0,∞) → [0,∞) is a smooth function, we denote by
fk ∈ C∞

(
[0,∞)

)
the solution to the initial value problem

f ′′k = k2fk

fk(0) = 0,

f ′k(0) = 1.

(2.2)

The solution is a non-negative smooth function. Concerning the curvature upper
bound (1.4), we have the following estimate by Choi.

Proposition 2.3. [6, Prop. 3.4] Suppose that f : [R0,∞)→ R, R0 > 0, is a positive
strictly increasing function satisfying the equation f ′′(r) = a2(r)f(r), where

a2(r) ≥ 1 + ε

r2 log r
,

for some ε > 0 on [R0,∞). Then for any 0 < ε̃ < ε, there exists R1 > R0 such
that, for all r ≥ R1,

f(r) ≥ r(log r)1+ε̃,
f ′(r)

f(r)
≥ 1

r
+

1 + ε̃

r log r
.

The pinching condition for the sectional curvatures gives a relation between the
maximal and minimal moduli of Jacobi fields along a given geodesic that contains
the radial vector:

Lemma 2.4. [5, Lemma 3.2][14, Lemma 3] Let v ∈ ToM be a unit vector and
γ = γv. Suppose that r0 > 0 and k < 0 are constants such that KM (P ) ≥ k for
every two-dimensional subspace P ⊂ TxM , x ∈ B(o, r0). Suppose that there exists
a constant CK <∞ such that

|KM (P )| ≤ CK |KM (P ′)|
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whenever t ≥ r0 and P, P ′ ⊂ Tγ(t)M are two-dimensional subspaces containing the

radial vector γ̇t. Let V and V̄ be two Jacobi fields along γ such that V0 = 0 = V̄0,
V ′0⊥γ̇0⊥V̄0, and |V ′0 | = 1 = |V̄ ′0 |. Then there exists a constant C0 = C0(CK , r0, k) >
0 such that

|Vr|CK ≥ C0|V̄r|
for every r ≥ r0.

To prove the solvability of the A-harmonic equation, we will need an estimate
for the gradient of a certain angular function. This estimate can be obtained in
terms of Jacobi fields:

Lemma 2.5. [14, Lemma 2] Let x0 ∈ M \ {o}, U = M \ γo,x0(R), and define
θ : U → [0, π], θ(x) = ^o(x0, x) := arccos〈γ̇o,x0

0 , γ̇o,x0 〉. Let x ∈ U and γ = γo,x.
Then there exists a Jacobi field W along γ with W (0) = 0, W ′0⊥γ̇0, and |W ′0| = 1
such that

|∇θ(x)| ≤ 1

|W (r(x))|
.

2.3. A-harmonic functions. Let M be a Riemannian manifold and 1 < p < ∞.
Suppose that A : TM → TM is an operator that satisfies the following assumptions
for some constants 0 < α ≤ β < ∞: the mapping Ax = A|TxM : TxM → TxM is
continuous for almost every x ∈M and the mapping x 7→ Ax(Vx) is measurable for
all measurable vector fields V on M ; for almost every x ∈ M and every v ∈ TxM
we have

〈Ax(v), v〉 ≥ α|v|p,
|Ax(v)| ≤ β|v|p−1,

〈Ax(v)−Ax(w), v − w〉 > 0,

whenever w ∈ TxM \ {v}, and

Ax(λv) = λ|λ|p−2Ax(v)

for all λ ∈ R \ {0}. The set of all such operators is denoted by Ap(M) and we say
that A is of type p. The constants α and β are called the structure constants of A.

Let Ω ⊂M be an open set and A ∈ Ap(M). A function u ∈ C(Ω) ∩W 1,p
loc (Ω) is

A-harmonic in Ω if it is a weak solution of the equation

− div A(∇u) = 0. (2.6)

In other words, if ∫
Ω

〈A(∇u),∇ϕ〉 = 0 (2.7)

for every test function ϕ ∈ C∞0 (Ω). If |∇u| ∈ Lp(Ω), then it is equivalent to require

(2.7) for all ϕ ∈W 1,p
0 (Ω) by approximation.

In the special case A(v) = |v|p−2v, A-harmonic functions are called p-harmonic
and, in particular, if p = 2, we obtain the usual harmonic functions.

A lower semicontinuous function u : Ω→ (−∞,∞] is called A-superharmonic if
u 6≡ ∞ in each component of Ω, and for each open D ⊂⊂ Ω and for every h ∈ C(D̄),
A-harmonic in D, h ≤ u on ∂D implies h ≤ u in D.

The asymptotic Dirichlet problem (for A-harmonic functions) is the following:
for given function f ∈ C(∂∞M), find a function u ∈ C(M̄) such that A(u) = 0 in
M and u|∂∞M = f. The asymptotic Dirichlet problem can be solved using the so
called Perron’s method which we will recall next. The definitions follow [9].

Fix p ∈ (1,∞) and let A ∈ Ap(M).

Definition 1. A function u : M → (−∞,∞] belongs to the upper class Uf of
f : ∂∞M → [−∞,∞] if
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(1) u is A-superharmonic in M ,
(2) u is bounded from below, and
(3) lim infx→x0 u(x) ≥ f(x0) for all x0 ∈ ∂∞M .

The function
Hf = inf{u : u ∈ Uf}

is called the upper Perron solution and Hf = −H−f the lower Perron solution.

Theorem 2.8. One of the following is true:

(1) Hf is A-harmonic in M ,

(2) Hf ≡ ∞ in M ,

(3) Hf ≡ −∞ in M .

We define A-regular points as follows.

Definition 2. A point x0 ∈ ∂∞M is called A-regular if

lim
x→x0

Hf (x) = f(x0)

for all f ∈ C(∂∞M).

Regularity and solvability of the Dirichlet problem are related. Namely, the
asymptotic Dirichlet problem for A-harmonic functions is uniquely solvable if and
only if every point at infinity is A-regular.

2.4. Young functions. Let φ : [0,∞)→ [0,∞) be a homeomorphism and let ψ =
φ−1. Define Young functions Φ and Ψ by setting

Φ(t) =

∫ t

0

φ(s) ds

and

Ψ(t) =

∫ t

0

ψ(s) ds

for each t ∈ [0,∞). Then we have the following Young’s inequality

ab ≤ Φ(a) + Ψ(b)

for all a, b ∈ [0,∞). The functions Φ and Ψ are said to form a complementary
Young pair. Furthermore, Φ (and similarly Ψ) is a continuous, strictly increasing,
and convex function satisfying

lim
t→0+

Φ(t)

t
= 0

and

lim
t→∞

Φ(t)

t
=∞.

For a more general definition of Young functions see e.g. [12].
As in [15], we consider complementary Young pairs of a special type. For that,

suppose that a homeomorphism G : [0,∞) → [0,∞) is a Young function that is a
diffeomorphism on (0,∞) and satisfies∫ 1

0

dt

G−1(t)
<∞ (2.9)

and

lim
t→0

tG′(t)

G(t)
= 1. (2.10)

Then G(·1/p)p, p > 1, is also a Young function and we define F : [0,∞) → [0,∞)
so that G(·1/p)p and F (·1/p) form a complementary Young pair. The space of such
functions F will be denoted by Fp. Note that if F ∈ Fp, then also λF ∈ Fp and
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F (λ·) ∈ Fp for every λ > 0. In [15] it is proved that for fixed ε0 ∈ (0, 1) there exists
F ∈ Fp such that

F (t) ≤ tp+ε0 exp

(
− 1
t

(
log
(
e+ 1

t

))−1−ε0
)

(2.11)

for all t ∈ [0,∞).

3. Solving the asymptotic Dirichlet problem

In order to solve the asymptotic Dirichlet problem for the A-harmonic equation,
we need the following two lemmas, which we state without proofs. Their proofs
can be found from the original papers. The first lemma allows us to estimate the
supremum of a function in a ball by the integral over a bigger ball. The second
lemma shows that we can estimate the previous integral up to another integral,
which will be uniformly bounded provided the sectional curvatures of M satisfy
(1.4) and (1.5).

Lemma 3.1. [15, Lemma 2.20] Suppose that ||θ||L∞ ≤ 1. Suppose that s ∈ (0, rS)

is a constant and x ∈ M . Assume also that u ∈ W 1,p
loc (M) is a function that is

A-harmonic in the open set Ω ∩ B(x, s), satisfies u − θ ∈ W 1,p
0 (Ω), infM θ ≤ u ≤

supM θ, and u = θ a.e. in M \ Ω. Then

ess sup
B(x,s/2)

ϕ
(
|u− θ|

)p(n−1) ≤ c
∫
B(x,s)

ϕ
(
|u− θ|

)p
,

where the constant c is independent of x.

Lemma 3.2. [3, Lemma 16] Let M be a Cartan-Hadamard manifold of dimension
n ≥ 2. Suppose that

K(P ) ≤ − 1 + ε

r(x)2 log r(x)
,

for some constant ε > 0, where K(P ) is the sectional curvature of any plane P ⊂
TxM that contains the radial vector ∇r(x) and x is any point in M \ B(o,R0).
Suppose that U ⊂M is an open relatively compact set and that u is an A-harmonic
function in U , with u− θ ∈W 1,p

0 (U), where A ∈ Ap(M) with

1 < p <
nα

β
,

and θ ∈ W 1,∞(M) is a continuous function with ||θ||∞ ≤ 1. Then there exists a
bounded C1-function C : [0,∞)→ [0,∞) and a constant c0 ≥ 1, that is independent
of θ, U and u, such that∫

U

ϕ
(
|u− θ|/c0

)p(
log(1 + r) + C(r)

)
≤ c0 + c0

∫
U

F

(
c0|∇θ|r log(1 + r)

log(1 + r) + C(r)

)(
log(1 + r) + C(r)

)
. (3.3)

In what follows, we will denote by j(x) the infimum, and by J(x) the supremum,
of |V

(
r(x)

)
| over Jacobi fields V along the geodesic γo,x that satisfy V0 = 0, |V ′0 | = 1

and V ′0⊥γ̇
o,x
0 .

Next we show that the integral appearing in Lemma 3.2 is finite provided the
upper bound (1.4) and the pinching condition (1.5) for the sectional curvatures.

Lemma 3.4. Let M be a Cartan-Hadamard manifold satisfying

K(P ) ≤ − 1 + ε

r(x)2 log r(x)
,
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where K(P ) is the sectional curvature of any plane P ⊂ TxM that contains the
radial vector field ∇r(x) and x is any point in M \ B(o,R0). Then there exists
F ∈ Fp such that

F

(
r(x)

c1j(x)

)(
log(1 + r) + C(r)

)
j(x)C(n−1) ≤ r(x)−2

for any positive constants C and c1, and for every x ∈M outside a compact set.

Proof. Fix ε0 ∈ (0, 1) and denote λ := 1 + ε0. Then by (2.11) there exists F ∈ Fp
such that

F (t) ≤ exp

(
− 1
t

(
log
(
e+ 1

t

))−λ)
for all small t. Hence the claim follows if we show that

exp

(
−c1j(x)

r(x)

(
log

(
e+

c1j(x)

r(x)

))−λ)(
log
(
1+r(x)

)
+C(r)

)
j(x)C(n−1) ≤ r(x)−2,

which, by taking logarithms, is equivalent with

c1j(x)

r(x)

(
log

(
e+

c1j(x)

r(x)

))−λ
− log

(
log
(
1 + r(x)

)
+ C(r)

)
− C(n− 1) log j(x)− 2 log r(x) ≥ 0.

Let ε̃ ∈ (0, ε). Then the curvature upper bound and Proposition 2.3 implies that

j(x) ≥ r(x)
(

log r(x)
)1+ε̃

for r(x) ≥ R1 > R0, so it is enough to show that

f(t) :=
c1t

a

(
log

(
e+

c1t

a

))−λ
−log

(
log(1+a)+C(a)

)
−C(n−1) log t−2 log a ≥ 0

for all t ≥ a
(

log a
)1+ε̃

when a is big enough. By straight computation we get

f ′(t) =

(
log
(
e+

c1t

a

))−λ( −λc21t
a2 log(e+ c1t/a)(e+ c1t/a)

+
c1
a

)
− C(n− 1)

t

=

[
c1
a

(
1− λ

log(e+ c1t/a)( eac1t + 1)

)/(
log
(
e+

c1t

a

))λ]
− C(n− 1)

t
.

Then we notice that c1t/a ≥ c1(log a)1+ε̃, which can be made big by increasing a,
and (log(e+ c1t/a))λ ≤ k(t/a)ν , where k is some constant and ν > 0 can be made
as small as we wish. Hence we obtain

f ′(t) ≥ k1

a1−νtν
− C(n− 1)

t
≥ 0

for all t ≥ a(log a)1+ε̃ and some constant k1 when a is big enough.
Finally we have to check that f is positive at least when t is big enough. To see

this, we notice that

f
(
a(log a)1+ε̃

)
= c1(log a)1+ε̃

(
log
(
e+ c1(log a)1+ε̃

))−λ
− log

(
log(1 + a)− C(a)

)
− C(n− 1) log

(
(a log a)1+ε̃

)
− 2 log a,

and this being positive is equivalent to

c1(log a)1+ε̃ ≥
(

log
(
e+ c1(log a)1+ε̃

))λ((
C(n− 1) + 2

)
log a

+ log
(

log(1 + a) + C(a)
)

+ C(n− 1) log(log a)1+ε̃
)
,

which holds true for a big enough, since (log a)1+ε̃ increases faster than (log a)
(

log(e+

c1(log a)1+ε̃)λ
)
. �
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To prove the Theorem 1.3, we give a proof for the following localized version
that shows the A-regularity of a point x0 ∈ ∂∞M . That, in turn, implies Theorem
1.3 since the uniqueness follows from the comparison principle.

The proof of the following theorem is the same as the proof of [3, Theorem 17]
except that to prove ∫

Ω

F

(
c0|∇θ|r log(1 + r)

L(r)

)
L(r) <∞,

where L(r) = log(1 + r) + C(r), we use Lemma 3.4 instead of some estimates
involving the curvature lower bound. For convenience, we will also write down the
proof.

Theorem 3.5. Let M be a Cartan-Hadamard manifold of dimension n ≥ 2 and
let x0 ∈ ∂∞M . Assume that x0 has a cone neighborhood U such that

K(P ) ≤ − 1 + ε

r(x)2 log r(x)
, (3.6)

for some constant ε > 0, where K(P ) is the sectional curvature of any two-
dimensional subspace P ⊂ TxM containing the radial vector ∇r(x), with x ∈ U∩M .
Suppose also that there exists a constant CK <∞ such that

|K(P )| ≤ CK |K(P ′)| (3.7)

whenever x ∈ U∩M and P, P ′ ⊂ TxM are two-dimensional subspaces containing the
radial vector ∇r(x). Then x0 is A-regular for every A ∈ Ap(M) with 1 < p < nα/β.

Proof. Let f : ∂∞M → R be a continuous function. To prove the A-regularity of
x0, we need to show that

lim
x→x0

Hf (x) = f(x0).

Fix ε′ > 0 and let v0 = γ̇o,x0

0 be the initial vector of the geodesic ray from o to
x0. Furthermore, let δ ∈ (0, π) and R0 > 0 be such that T (v0, δ, R0) ⊂ U and that
|f(x1)− f(x0)| < ε′ for all x1 ∈ C(v0, δ)∩ ∂∞M . Fix also ε̃ ∈ (0, ε), where ε is the
constant in (3.6), and let r1 > max(2, R1), where R1 ≥ R0 is given by Proposition
2.3.

We denote Ω = T (v0, δ, r1) ∩M and define θ ∈ C(M̄) by setting

θ(x) = min
(

1,max
(
r1 + 1− r(x), δ−1^o(x0, x)

))
.

Let Ωj = Ω ∩ B(o, j) for integers j > r1 and let uj be the unique A-harmonic

function in Ωj with uj − θ ∈ W 1,p
0 (Ωj). Each y ∈ ∂Ωj is A-regular and hence

functions uj can be continuously extended to ∂Ωj by setting uj = θ on ∂Ωj . Next
we notice that 0 ≤ uj ≤ 1, so the sequence (uj) is equicontinuous, and hence, by
Arzelá-Ascoli, we obtain a subsequence (still denoted by (uj)) that converges locally
uniformly to a continuous function u : Ω̄ → [0, 1]. It follows that u is A-harmonic
in Ω; see e.g. [9, Chapter 6].

Next we aim to prove that

lim
x→x0
x∈Ω

u(x) = 0, (3.8)

and for that we use geodesic polar coordinates (r, v) for points x ∈ Ω. Here r =
r(x) ∈ [r1,∞) and v = γ̇o,x0 , and we denote by λ(r, v) the Jacobian of these polar

coordinates. Denote θ̃ = θ/c0, ũj = uj/c0 and ũ = u/c0, where c0 ≥ 1 is a constant
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given by Lemma 3.2. Then applying Fatou’s lemma and Lemma 3.2 to Ωj we obtain∫
Ω

ϕ
(
|ũ− θ̃|

)p
=

∫
Ω

ϕ
(
|u− θ|/c0

)p ≤ lim inf
j→∞

∫
Ωj

ϕ
(
|uj − θ|/c0

)p
≤ lim inf

j→∞

∫
Ωj

ϕ
(
|uj − θ|/c0

)p
L(r)

≤ c0 + c0

∫
Ω

F

(
c0|∇θ|r log(1 + r)

L(r)

)
L(r)

= c0 + c0

∫ ∞
r1

∫
SoM

F

(
c0|∇θ(r, v)|r log(1 + r)

log(1 + r) + C(r)

)(
log(1 + r) (3.9)

+ C(r)
)
λ(r, v) dv dr

≤ c0 + c0

∫ ∞
r1

∫
SoM

F

(
r

c1j(r, v)

)(
log(1 + r) + C(r)

) 1

C0
j(r, v)C(n−1) dv dr

<∞.
At the end we applied also Lemmas 2.4, 2.5, and 3.4.

Next, we extend each uj to a function uj ∈W 1,p
loc (M)∩C(M) by setting uj(y) =

θ(y) for every y ∈ M \ Ωj . Let x ∈ Ω and fix s ∈ (0, rS). For j large enough, we
obtain by Lemma 3.1

sup
B(x,s/2)

ϕ
(
|ũj − θ̃|

)p(n+1) ≤ c
∫
B(x,s)

ϕ
(
|ũj − θ̃|

)p
.

Applying this with dominated convergence theorem, we get

sup
B(x,s/2)

ϕ
(
|ũ− θ̃|

)p(n+1)
= sup
B(x,s/2)

lim
j→∞

ϕ
(
|ũj − θ̃|

)p(n+1)

≤ lim sup
j→∞

sup
B(x,s/2)

ϕ
(
|ũj − θ̃|

)p(n+1)
(3.10)

≤ c lim sup
j→∞

∫
B(x,s)

ϕ
(
|ũj − θ̃|

)p
= c

∫
B(x,s)

ϕ
(
|ũ− θ̃|

)p
.

Let (xk) ⊂ Ω be a sequence such that xk → x0 as k → ∞. We apply the estimate
(3.10) with x = xk and a fixed s ∈ (0, rS), together with (3.9), to obtain

lim
k→∞

sup
B(xk,s/2)

ϕ
(
|ũ− θ̃|

)p(n+1) ≤ c lim
k→∞

∫
B(xk,s)

ϕ
(
|ũ− θ̃|

)p
= 0.

It follows that
lim
k→∞

|ũ(xk)− θ̃(xk)| = 0,

which, in turn, implies (3.8).
Define a function w : M → R by

w(x) =

{
min

(
1, 2u(x)

)
if x ∈ Ω;

1, if x ∈M \ Ω.

The minimum of two A-superharmonic functions is A-superharmonic and hence w
is A-superharmonic. The definition of Hf implies that

Hf ≤ f(x0) + ε′ + 2(sup |f |)w,
and therefore, by (3.8), we have

lim sup
x→x0

Hf (x) ≤ f(x0) + ε′.

Similarly one can prove that

lim inf
x→x0

Hf (x) ≥ f(x0)− ε′,
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and because Hf ≥ Hf and ε′ was arbitrary, we conclude that

lim
x→x0

Hf (x) = f(x0).

Therefore x0 is A-regular point. �
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