36,333 research outputs found
Damped and sub-damped Lyman-α absorbers in z > 4 QSOs
We present the results of a survey of damped (DLA, log N(H I) > 20.3) and sub-damped Lyman-α systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 4 19.5 were detected of which 40 systems are damped Lyman-α systems for an absorption length of ΔX = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and find, consistent with previous studies at similar resolution, that Ω_(DLA,HI) decreases at z > 3.5. The overall cosmological evolution of Ω_(HI) shows a peak around this redshift. The H I column density distribution for log N(H I) ≥ 20.3 is fitted, consistent with previous surveys, with a single power-law of index α ~ −1.8 ± 0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a flattening of the function at lower H I column densities with an index of α ~ −1.4 for the column density range log N(H I) = 19.5−21. The fraction of H I mass in sub-DLAs is of the order of 30%. The H I column density distribution does not evolve strongly from z ~ 2.5 to z ~ 4.5
High Resolution Ionization of Ultracold Neutral Plasmas
Collective effects, such as waves and instabilities, are integral to our
understanding of most plasma phenomena. We have been able to study these in
ultracold neutral plasmas by shaping the initial density distribution through
spatial modulation of the ionizing laser intensity. We describe a relay imaging
system for the photoionization beam that allows us to create higher resolution
features and its application to extend the observation of ion acoustic waves to
shorter wavelengths. We also describe the formation of sculpted density
profiles to create fast expansion of plasma into vacuum and streaming plasmas
The influence of statistical properties of Fourier coefficients on random surfaces
Many examples of natural systems can be described by random Gaussian
surfaces. Much can be learned by analyzing the Fourier expansion of the
surfaces, from which it is possible to determine the corresponding Hurst
exponent and consequently establish the presence of scale invariance. We show
that this symmetry is not affected by the distribution of the modulus of the
Fourier coefficients. Furthermore, we investigate the role of the Fourier
phases of random surfaces. In particular, we show how the surface is affected
by a non-uniform distribution of phases
Field experimental study of traffic-induced turbulence on highways
This paper is focused on traffic-induced turbulence (TIT) analysis from a field campaign performed in 2011, using ultrasonic anemometers deployed in the M-12 Highways, Madrid (Spain). The study attempts to improve knowledge about the influence of traffic-related parameters on turbulence. Linear relationships between vehicle speed and turbulent kinetic energy (TKE) values are found with coefficients of determination (R2) of 0.75 and 0.55 for the lorry and van respectively. The vehicle-induced fluctuations in the wind components (u', v' and w') showed the highest values for the longitudinal component (v) because of the wake-passing effect. In the analysis of wake produced by moving vehicles it is indicated how the turbulence dissipates in relation to a distance d and height h. The TKE values were found to be higher at the measuring points closer to the surface during the wake analysis.This work was supported by the OASIS Research Project that was co financed by CDTI (Spanish Science and Innovation Ministry) and developed with the Spanish companies: Iridium, OHL Concesiones, Abertis, Sice, Indra, Dragados, OHL, Geocisa, GMV, Asfaltos Augusta, Hidrofersa, Eipsa, PyG, CPS, AEC and Torre de Comares Arquitectos s.l and 16 research centres
Spin and pseudospin symmetries in the antinucleon spectrum of nuclei
Spin and pseudospin symmetries in the spectra of nucleons and antinucleons
are studied in a relativistic mean-field theory with scalar and vector
Woods-Saxon potentials, in which the strength of the latter is allowed to
change. We observe that, for nucleons and antinucleons, the spin symmetry is of
perturbative nature and it is almost an exact symmetry in the physical region
for antinucleons. The opposite situation is found in the pseudospin symmetry
case, which is better realized for nucleons than for antinucleons, but is of
dynamical nature and cannot be viewed in a perturbative way both for nucleons
and antinucleons. This is shown by computing the spin-orbit and
pseudospin-orbit couplings for selected spin and pseudospin partners in both
spectra.Comment: 8 figures, uses revtex 4.1 macro
Recommended from our members
Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool.
Mesenchymal stem cells (MSCs) from adult somatic tissues may differentiate in vitro and in vivo into multiple mesodermal tissues including bone, cartilage, adipose tissue, tendon, ligament or even muscle. MSCs preferentially home to damaged tissues where they exert their therapeutic potential. A striking feature of the MSCs is their low inherent immunogenicity as they induce little, if any, proliferation of allogeneic lymphocytes and antigen-presenting cells. Instead, MSCs appear to be immunosuppressive in vitro. Their multilineage differentiation potential coupled to their immuno-privileged properties is being exploited worldwide for both autologous and allogeneic cell replacement strategies. Here, we introduce the readers to the biology of MSCs and the mechanisms underlying immune tolerance. We then outline potential cell replacement strategies and clinical applications based on the MSCs immunological properties. Ongoing clinical trials for graft-versus-host-disease, haematopoietic recovery after co-transplantation of MSCs along with haematopoietic stem cells and tissue repair are discussed. Finally, we review the emerging area based on the use of MSCs as a target cell subset for either spontaneous or induced neoplastic transformation and, for modelling non-haematological mesenchymal cancers such as sarcomas
Modeling disorder in graphene
We present a study of different models of local disorder in graphene. Our
focus is on the main effects that vacancies -- random, compensated and
uncompensated --, local impurities and substitutional impurities bring into the
electronic structure of graphene. By exploring these types of disorder and
their connections, we show that they introduce dramatic changes in the low
energy spectrum of graphene, viz. localized zero modes, strong resonances, gap
and pseudogap behavior, and non-dispersive midgap zero modes.Comment: 16 pages, lower resolution figure
Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance
Indexación: Web of Science; Scopus.The Atacama Desert hosts diverse ecosystems including salt flats and shallow Andean lakes. Several heavy metals are found in the Atacama Desert, and microorganisms growing in this environment show varying levels of resistance/tolerance to copper, tellurium, and arsenic, among others. Herein, we report the genome sequence and comparative genomic analysis of a new Exiguobacterium strain, sp. SH31, isolated from an altiplanic shallow athalassohaline lake. Exiguobacterium sp. SH31 belongs to the phylogenetic Group II and its closest relative is Exiguobacterium sp. S17, isolated from the Argentinian Altiplano (95% average nucleotide identity). Strain SH31 encodes a wide repertoire of proteins required for cadmium, copper, mercury, tellurium, chromium, and arsenic resistance. Of the 34 Exiguobacterium genomes that were inspected, only isolates SH31 and S17 encode the arsenic efflux pump Acr3. Strain SH31 was able to grow in up to 10 mM arsenite and 100 mM arsenate, indicating that it is arsenic resistant. Further, expression of the ars operon and acr3 was strongly induced in response to both toxics, suggesting that the arsenic efflux pump Acr3 mediates arsenic resistance in Exiguobacterium sp. SH31.http://journal.frontiersin.org/article/10.3389/fmicb.2017.00456/ful
An alternative approach for the dynamics of polarons in one dimension
We developed a new method based on functional integration to treat the
dynamics of polarons in one-dimensional systems. We treat the acoustical and
the optical case in an unified manner, showing their differences and
similarities. The mobility and diffusion coefficients are calculated in the
Markovian approximation in the strong coupling limit.Comment: 57 page
Applications of quantum integrable systems
We present two applications of quantum integrable systems. First, we predict
that it is possible to generate high harmonics from solid state devices by
demostrating that the emission spectrum for a minimally coupled laser field of
frequency to an impurity system of a quantum wire, contains multiples
of the incoming frequency. Second, evaluating expressions for the conductance
in the high temperature regime we show that the caracteristic filling fractions
of the Jain sequence, which occur in the fractional quantum Hall effect, can be
obtained from quantum wires which are described by minimal affine Toda field
theories.Comment: 25 pages of LaTex, 4 figures, based on talk at the 6-th international
workshop on conformal field theories and integrable models, (Chernogolovka,
September 2002
- …