166 research outputs found
Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies
We have investigated two-electron bound state formation in a square
two-dimensional t-J-U model with hopping anisotropies for zero electron
density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in stripe-like arrangements of holes and spins found
in various transition metal oxides. In this report we provide analytical
solutions to this problem, and thus demonstrate that bound-state formation
occurs at a critical exchange coupling, J_c, that decreases to zero in the
limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be
contrasted with J_c/t = 2 for either a one-dimensional chain, or a
two-dimensional plane with isotropic hopping. Most importantly, this behaviour
is found to be qualitatively similar to that of two electrons on the two-leg
ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter
result as guidance, we have evaluated the pair correlation function, thus
determining that the bound state corresponds to one electron moving along one
chain, with the second electron moving along the opposite chain, similar to two
electrons confined to move along parallel, neighbouring, metallic stripes. We
emphasize that the above results are not restricted to the zero density limit -
we have completed an exact diagonalization study of two holes in a 12 X 2
two-leg ladder described by the t-J model and have found that the
above-mentioned lowering of the binding energy with hopping anisotropy persists
near half filling.Comment: 6 pages, 3 eps figure
Entropic C-theorems in free and interacting two-dimensional field theories
The relative entropy in two-dimensional field theory is studied on a cylinder
geometry, interpreted as finite-temperature field theory. The width of the
cylinder provides an infrared scale that allows us to define a dimensionless
relative entropy analogous to Zamolodchikov's function. The one-dimensional
quantum thermodynamic entropy gives rise to another monotonic dimensionless
quantity. I illustrate these monotonicity theorems with examples ranging from
free field theories to interacting models soluble with the thermodynamic Bethe
ansatz. Both dimensionless entropies are explicitly shown to be monotonic in
the examples that we analyze.Comment: 34 pages, 3 figures (8 EPS files), Latex2e file, continuation of
hep-th/9710241; rigorous analysis of sufficient conditions for universality
of the dimensionless relative entropy, more detailed discussion of the
relation with Zamolodchikov's theorem, references added; to appear in Phys.
Rev.
Klein tunneling in graphene: optics with massless electrons
This article provides a pedagogical review on Klein tunneling in graphene,
i.e. the peculiar tunneling properties of two-dimensional massless Dirac
electrons. We consider two simple situations in detail: a massless Dirac
electron incident either on a potential step or on a potential barrier and use
elementary quantum wave mechanics to obtain the transmission probability. We
emphasize the connection to related phenomena in optics, such as the
Snell-Descartes law of refraction, total internal reflection, Fabry-P\'erot
resonances, negative refraction index materials (the so called meta-materials),
etc. We also stress that Klein tunneling is not a genuine quantum tunneling
effect as it does not necessarily involve passing through a classically
forbidden region via evanescent waves. A crucial role in Klein tunneling is
played by the conservation of (sublattice) pseudo-spin, which is discussed in
detail. A major consequence is the absence of backscattering at normal
incidence, of which we give a new shorten proof. The current experimental
status is also thoroughly reviewed. The appendix contains the discussion of a
one-dimensional toy model that clearly illustrates the difference in Klein
tunneling between mono- and bi-layer graphene.Comment: short review article, 18 pages, 14 figures; v3: references added,
several figures slightly modifie
Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential
In this paper we analyze the relativistic quantum motion of charged spin-0
and spin-1/2 particles in the presence of a uniform magnetic field and scalar
potentials in the cosmic string spacetime. In order to develop this analysis,
we assume that the magnetic field is parallel to the string and the scalar
potentials present a cylindrical symmetry with their center on the string. Two
distinct configurations for the scalar potential, , are considered:
the potential proportional to the inverse of the polar distance, i.e.,
, and the potential proportional to this distance, i.e.,
. The energy spectra are explicitly computed for different physical
situations and presented their dependences on the magnetic field strength and
scalar coupling constants.Comment: New version with 20 pages and no figure. Some minor revisions and six
references added. Accepted for publication in EJP
Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum
We report a first measurement for ultra-high energy cosmic rays of the
correlation between the depth of shower maximum and the signal in the water
Cherenkov stations of air-showers registered simultaneously by the fluorescence
and the surface detectors of the Pierre Auger Observatory. Such a correlation
measurement is a unique feature of a hybrid air-shower observatory with
sensitivity to both the electromagnetic and muonic components. It allows an
accurate determination of the spread of primary masses in the cosmic-ray flux.
Up till now, constraints on the spread of primary masses have been dominated by
systematic uncertainties. The present correlation measurement is not affected
by systematics in the measurement of the depth of shower maximum or the signal
in the water Cherenkov stations. The analysis relies on general characteristics
of air showers and is thus robust also with respect to uncertainties in
hadronic event generators. The observed correlation in the energy range around
the `ankle' at differs significantly from
expectations for pure primary cosmic-ray compositions. A light composition made
up of proton and helium only is equally inconsistent with observations. The
data are explained well by a mixed composition including nuclei with mass . Scenarios such as the proton dip model, with almost pure compositions, are
thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray
flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
- …