185 research outputs found
Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies
We have investigated two-electron bound state formation in a square
two-dimensional t-J-U model with hopping anisotropies for zero electron
density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in stripe-like arrangements of holes and spins found
in various transition metal oxides. In this report we provide analytical
solutions to this problem, and thus demonstrate that bound-state formation
occurs at a critical exchange coupling, J_c, that decreases to zero in the
limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be
contrasted with J_c/t = 2 for either a one-dimensional chain, or a
two-dimensional plane with isotropic hopping. Most importantly, this behaviour
is found to be qualitatively similar to that of two electrons on the two-leg
ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter
result as guidance, we have evaluated the pair correlation function, thus
determining that the bound state corresponds to one electron moving along one
chain, with the second electron moving along the opposite chain, similar to two
electrons confined to move along parallel, neighbouring, metallic stripes. We
emphasize that the above results are not restricted to the zero density limit -
we have completed an exact diagonalization study of two holes in a 12 X 2
two-leg ladder described by the t-J model and have found that the
above-mentioned lowering of the binding energy with hopping anisotropy persists
near half filling.Comment: 6 pages, 3 eps figure
Entropic C-theorems in free and interacting two-dimensional field theories
The relative entropy in two-dimensional field theory is studied on a cylinder
geometry, interpreted as finite-temperature field theory. The width of the
cylinder provides an infrared scale that allows us to define a dimensionless
relative entropy analogous to Zamolodchikov's function. The one-dimensional
quantum thermodynamic entropy gives rise to another monotonic dimensionless
quantity. I illustrate these monotonicity theorems with examples ranging from
free field theories to interacting models soluble with the thermodynamic Bethe
ansatz. Both dimensionless entropies are explicitly shown to be monotonic in
the examples that we analyze.Comment: 34 pages, 3 figures (8 EPS files), Latex2e file, continuation of
hep-th/9710241; rigorous analysis of sufficient conditions for universality
of the dimensionless relative entropy, more detailed discussion of the
relation with Zamolodchikov's theorem, references added; to appear in Phys.
Rev.
Klein tunneling in graphene: optics with massless electrons
This article provides a pedagogical review on Klein tunneling in graphene,
i.e. the peculiar tunneling properties of two-dimensional massless Dirac
electrons. We consider two simple situations in detail: a massless Dirac
electron incident either on a potential step or on a potential barrier and use
elementary quantum wave mechanics to obtain the transmission probability. We
emphasize the connection to related phenomena in optics, such as the
Snell-Descartes law of refraction, total internal reflection, Fabry-P\'erot
resonances, negative refraction index materials (the so called meta-materials),
etc. We also stress that Klein tunneling is not a genuine quantum tunneling
effect as it does not necessarily involve passing through a classically
forbidden region via evanescent waves. A crucial role in Klein tunneling is
played by the conservation of (sublattice) pseudo-spin, which is discussed in
detail. A major consequence is the absence of backscattering at normal
incidence, of which we give a new shorten proof. The current experimental
status is also thoroughly reviewed. The appendix contains the discussion of a
one-dimensional toy model that clearly illustrates the difference in Klein
tunneling between mono- and bi-layer graphene.Comment: short review article, 18 pages, 14 figures; v3: references added,
several figures slightly modifie
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
The rapid atmospheric monitoring system of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
Accuracy, precision and robustness of different methods to obtain samples from silages in fermentation studies
Características de fermentação da silagem de cana-de-açúcar tratada com uréia, zeólita, inoculante bacteriano e inoculante bacteriano/enzimático
Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential
In this paper we analyze the relativistic quantum motion of charged spin-0
and spin-1/2 particles in the presence of a uniform magnetic field and scalar
potentials in the cosmic string spacetime. In order to develop this analysis,
we assume that the magnetic field is parallel to the string and the scalar
potentials present a cylindrical symmetry with their center on the string. Two
distinct configurations for the scalar potential, , are considered:
the potential proportional to the inverse of the polar distance, i.e.,
, and the potential proportional to this distance, i.e.,
. The energy spectra are explicitly computed for different physical
situations and presented their dependences on the magnetic field strength and
scalar coupling constants.Comment: New version with 20 pages and no figure. Some minor revisions and six
references added. Accepted for publication in EJP
- …
