166 research outputs found

    Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies

    Full text link
    We have investigated two-electron bound state formation in a square two-dimensional t-J-U model with hopping anisotropies for zero electron density; these anisotropies are introduced to mimic the hopping energies similar to those expected in stripe-like arrangements of holes and spins found in various transition metal oxides. In this report we provide analytical solutions to this problem, and thus demonstrate that bound-state formation occurs at a critical exchange coupling, J_c, that decreases to zero in the limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be contrasted with J_c/t = 2 for either a one-dimensional chain, or a two-dimensional plane with isotropic hopping. Most importantly, this behaviour is found to be qualitatively similar to that of two electrons on the two-leg ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter result as guidance, we have evaluated the pair correlation function, thus determining that the bound state corresponds to one electron moving along one chain, with the second electron moving along the opposite chain, similar to two electrons confined to move along parallel, neighbouring, metallic stripes. We emphasize that the above results are not restricted to the zero density limit - we have completed an exact diagonalization study of two holes in a 12 X 2 two-leg ladder described by the t-J model and have found that the above-mentioned lowering of the binding energy with hopping anisotropy persists near half filling.Comment: 6 pages, 3 eps figure

    Entropic C-theorems in free and interacting two-dimensional field theories

    Get PDF
    The relative entropy in two-dimensional field theory is studied on a cylinder geometry, interpreted as finite-temperature field theory. The width of the cylinder provides an infrared scale that allows us to define a dimensionless relative entropy analogous to Zamolodchikov's cc function. The one-dimensional quantum thermodynamic entropy gives rise to another monotonic dimensionless quantity. I illustrate these monotonicity theorems with examples ranging from free field theories to interacting models soluble with the thermodynamic Bethe ansatz. Both dimensionless entropies are explicitly shown to be monotonic in the examples that we analyze.Comment: 34 pages, 3 figures (8 EPS files), Latex2e file, continuation of hep-th/9710241; rigorous analysis of sufficient conditions for universality of the dimensionless relative entropy, more detailed discussion of the relation with Zamolodchikov's theorem, references added; to appear in Phys. Rev.

    Klein tunneling in graphene: optics with massless electrons

    Full text link
    This article provides a pedagogical review on Klein tunneling in graphene, i.e. the peculiar tunneling properties of two-dimensional massless Dirac electrons. We consider two simple situations in detail: a massless Dirac electron incident either on a potential step or on a potential barrier and use elementary quantum wave mechanics to obtain the transmission probability. We emphasize the connection to related phenomena in optics, such as the Snell-Descartes law of refraction, total internal reflection, Fabry-P\'erot resonances, negative refraction index materials (the so called meta-materials), etc. We also stress that Klein tunneling is not a genuine quantum tunneling effect as it does not necessarily involve passing through a classically forbidden region via evanescent waves. A crucial role in Klein tunneling is played by the conservation of (sublattice) pseudo-spin, which is discussed in detail. A major consequence is the absence of backscattering at normal incidence, of which we give a new shorten proof. The current experimental status is also thoroughly reviewed. The appendix contains the discussion of a one-dimensional toy model that clearly illustrates the difference in Klein tunneling between mono- and bi-layer graphene.Comment: short review article, 18 pages, 14 figures; v3: references added, several figures slightly modifie

    Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential

    Full text link
    In this paper we analyze the relativistic quantum motion of charged spin-0 and spin-1/2 particles in the presence of a uniform magnetic field and scalar potentials in the cosmic string spacetime. In order to develop this analysis, we assume that the magnetic field is parallel to the string and the scalar potentials present a cylindrical symmetry with their center on the string. Two distinct configurations for the scalar potential, S(r)S(r), are considered: (i)(i) the potential proportional to the inverse of the polar distance, i.e., S1/rS\propto1/r, and (ii)(ii) the potential proportional to this distance, i.e., SrS\propto r. The energy spectra are explicitly computed for different physical situations and presented their dependences on the magnetic field strength and scalar coupling constants.Comment: New version with 20 pages and no figure. Some minor revisions and six references added. Accepted for publication in EJP

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    corecore