924 research outputs found
Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry
We investigate the macroscopic effects of charge density waves (CDW) and
superconductivity in layered superconducting systems with broken lattice
inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D)
transition metal dichalcogenides (TMD). We work with the low temperature time
dependent Ginzburg-Landau theory and study the coupling of lattice distortions
and low energy CDW collective modes to the superconducting order parameter in
the presence of electromagnetic fields. We show that superconductivity and
piezoelectricity can coexist in these singular metals. Furthermore, our study
indicates the nature of the quantum phase transition between a commensurate CDW
phase and the stripe phase that has been observed as a function of applied
pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.
Extremal black holes in D=5: SUSY vs. Gauss-Bonnet corrections
We analyse near-horizon solutions and compare the results for the black hole
entropy of five-dimensional spherically symmetric extremal black holes when the
N=2 SUGRA actions are supplied with two different types of higher-order
corrections: (1) supersymmetric completion of gravitational Chern-Simons term,
and (2) Gauss-Bonnet term. We show that for large BPS black holes lowest order
\alpha' corrections to the entropy are the same, but for non-BPS are generally
different. We pay special attention to the class of prepotentials connected
with K3\times T^2 and T^6 compactifications. For supersymmetric correction we
find beside BPS also a set of non-BPS solutions. In the particular case of T^6
compactification (equivalent to the heterotic string on ) we
find the (almost) complete set of solutions (with exception of some non-BPS
small black holes), and show that entropy of small black holes is different
from statistical entropy obtained by counting of microstates of heterotic
string theory. We also find complete set of solutions for K3\times T^2 and T^6
case when correction is given by Gauss-Bonnet term. Contrary to
four-dimensional case, obtained entropy is different from the one with
supersymmetric correction. We show that in Gauss-Bonnet case entropy of small
``BPS'' black holes agrees with microscopic entropy in the known cases.Comment: 28 pages; minor changes, version to appear in JHE
Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions
We compute logarithmic corrections to the entropy of rotating extremal black
holes using quantum entropy function i.e. Euclidean quantum gravity approach.
Our analysis includes five dimensional supersymmetric BMPV black holes in type
IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL
models, and also non-supersymmetric extremal Kerr black hole and slowly
rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black
holes our results are in perfect agreement with the microscopic results derived
from string theory. In particular we reproduce correctly the dependence of the
logarithmic corrections on the number of U(1) gauge fields in the theory, and
on the angular momentum carried by the black hole in different scaling limits.
We also explain the shortcomings of the Cardy limit in explaining the
logarithmic corrections in the limit in which the (super)gravity description of
these black holes becomes a valid approximation. For non-supersymmetric
extremal black holes, e.g. for the extremal Kerr black hole in four dimensions,
our result provides a stringent testing ground for any microscopic explanation
of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation
between boundary condition and choice of ensemble, modified analysis for
slowly rotating black holes, all results remain unchanged, typos corrected;
v3: minor additions and correction
Crystal Structure and Physical Properties of U3T3Sn4 (T = Ni, Cu) Single-Crystals
Heat capacity experiments, crystal structure determination and transmission
electron microscopy have been carried out on U3Cu3Sn4 single-crystals. U3Cu3Sn4
was confirmed to be a heavy-fermion antiferromagnet (TN=13(1) K) with a low
temperature electronic heat capacity coefficient gamma=390 mJ/molUK2. Low
temperature heat capacity experiments on a U3Ni3Sn4 single-crystal indicate
that below 0.4 K there is a crossover between the previously observed non-Fermi
liquid behavior and a Fermi liquid state.Comment: 12 pages (incl. 2 tables & 4 figures), to appear in Physica
Transport Properties through Double Barrier Structure in Graphene
The mode-dependent transmission of relativistic ballistic massless Dirac
fermion through a graphene based double barrier structure is being investigated
for various barrier parameters. We compare our results with already published
work and point out the relevance of these findings to a systematic study of the
transport properties in double barrier structures. An interesting situation
arises when we set the potential in the leads to zero, then our 2D problem
reduces effectively to a 1D massive Dirac equation with an effective mass
proportional to the quantized wave number along the transverse direction.
Furthermore we have shown that the minimal conductivity and maximal Fano factor
remain insensitive to the ratio between the two potentials V_2/V_1=\alpha.Comment: 18 pages, 12 figures, clarifications and reference added, misprints
corrected. Version to appear in JLT
A mean-field kinetic lattice gas model of electrochemical cells
We develop Electrochemical Mean-Field Kinetic Equations (EMFKE) to simulate
electrochemical cells. We start from a microscopic lattice-gas model with
charged particles, and build mean-field kinetic equations following the lines
of earlier work for neutral particles. We include the Poisson equation to
account for the influence of the electric field on ion migration, and
oxido-reduction processes on the electrode surfaces to allow for growth and
dissolution. We confirm the viability of our approach by simulating (i) the
electrochemical equilibrium at flat electrodes, which displays the correct
charged double-layer, (ii) the growth kinetics of one-dimensional
electrochemical cells during growth and dissolution, and (iii) electrochemical
dendrites in two dimensions.Comment: 14 pages twocolumn, 17 figure
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Adiabatic evolution of a coupled-qubit Hamiltonian
We present a general method for studying coupled qubits driven by
adiabatically changing external parameters. Extended calculations are provided
for a two-bit Hamiltonian whose eigenstates can be used as logical states for a
quantum CNOT gate. From a numerical analysis of the stationary Schroedinger
equation we find a set of parameters suitable for representing CNOT, while from
a time-dependent study the conditions for adiabatic evolution are determined.
Specializing to a concrete physical system involving SQUIDs, we determine
reasonable parameters for experimental purposes. The dissipation for SQUIDs is
discussed by fitting experimental data. The low dissipation obtained supports
the idea that adiabatic operations could be performed on a time scale shorter
than the decoherence time.Comment: 10 pages, 4 figures, to be pub.in Phys Rev
Application of phasor measurement units for monitoring power system dynamic performance
This Working Group is a sequel to a previous working group on Wide Area Monitoring and Control for Transmission Capability Enhancement, which published the Technical Brochure 330 in 2007. Since then the synchrophasor technology has advanced rapidly and many utilities around the world have installed hundreds of PMUs in their networks. In this Technical Brochure, we look at the current state of the technology and the extent to which it has been used in the industry. As the technology has matured, it is also important to understand the communication protocols used in synchrophasor networks and their relevant cyber-security issues. These concerns are briefly discussed in the brochure. The applications of Phasor Measurement Units (PMU) measurements reported here are divided into three categories: (a) applications already installed in utility networks, (b) applications that are well-tested, but not yet installed, and (c) applications that are beneficial to the industry, but not fully developed yet. The most common and mature applications are wide area monitoring, state estimation, and model validation. Out of these three applications, wide area monitoring is well established in the industry. The protection and control applications are emerging as evident from the reported examples. The experience of using remote synchrophasor measurements as feedback control signals is not widely reported by the industry. In parallel to this Working Group, Study Committee B5 had a Working Group on “Wide area protection and control technologies.” The Technical Brochure 664 published by this Working Group in September 2016 reviews synchrophasor technology and discusses the industry experience with wide area protection and control. The North American synchrophasor Initiative (NASPI) is another technical group that has gathered and reported a wide range of PMU experiences of industry and researchers. In summary, the field-tested applications presented in this Technical Brochure are a testimony to the confidence of utilities in the synchrophasor technology. The progress in state estimation techniques indicates that synchrophasor measurements will become a standard part of energy management and security assessment systems in the near future
Background model systematics for the Fermi GeV excess
The possible gamma-ray excess in the inner Galaxy and the Galactic center
(GC) suggested by Fermi-LAT observations has triggered a large number of
studies. It has been interpreted as a variety of different phenomena such as a
signal from WIMP dark matter annihilation, gamma-ray emission from a population
of millisecond pulsars, or emission from cosmic rays injected in a sequence of
burst-like events or continuously at the GC. We present the first comprehensive
study of model systematics coming from the Galactic diffuse emission in the
inner part of our Galaxy and their impact on the inferred properties of the
excess emission at Galactic latitudes and 300 MeV to 500
GeV. We study both theoretical and empirical model systematics, which we deduce
from a large range of Galactic diffuse emission models and a principal
component analysis of residuals in numerous test regions along the Galactic
plane. We show that the hypothesis of an extended spherical excess emission
with a uniform energy spectrum is compatible with the Fermi-LAT data in our
region of interest at CL. Assuming that this excess is the extended
counterpart of the one seen in the inner few degrees of the Galaxy, we derive a
lower limit of ( CL) on its extension away from the GC. We
show that, in light of the large correlated uncertainties that affect the
subtraction of the Galactic diffuse emission in the relevant regions, the
energy spectrum of the excess is equally compatible with both a simple broken
power-law of break energy GeV, and with spectra predicted by the
self-annihilation of dark matter, implying in the case of final
states a dark matter mass of GeV.Comment: 65 pages, 28 figures, 7 table
- …
