2,036 research outputs found
Preparation and Characterization of Homogeneous YBCO Single Crystals with Doping Level near the SC-AFM Boundary
High-purity and homogeneous YBa2Cu3Oy single crystals with carrier doping
level near the AFM-SC boundary have been obtained in the oxygen content range
between y = 6.340 and 6.370. The crystals are ortho-II phase at room
temperature and undergo the orthorhombic to tetragonal transition at about
140_Degree_C. They show sharp superconducting transitions, with Tc between 4
and 20 K. Tc changes by 0.8 K when the oxygen content y is changed by 0.001,
and is also sensitive to annealing conditions near room temperature, due to the
dependence of doping on oxygen ordering correlation lengths. Crystals with
oxygen content y lower than 6.345 are non-superconducting.Comment: 6 page
Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry
We investigate the macroscopic effects of charge density waves (CDW) and
superconductivity in layered superconducting systems with broken lattice
inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D)
transition metal dichalcogenides (TMD). We work with the low temperature time
dependent Ginzburg-Landau theory and study the coupling of lattice distortions
and low energy CDW collective modes to the superconducting order parameter in
the presence of electromagnetic fields. We show that superconductivity and
piezoelectricity can coexist in these singular metals. Furthermore, our study
indicates the nature of the quantum phase transition between a commensurate CDW
phase and the stripe phase that has been observed as a function of applied
pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.
Monte Carlo study of the critical temperature for the planar rotator model with nonmagnetic impurities
We performed Monte Carlo simulations to calculate the
Berezinskii-Kosterlitz-Thouless (BKT) temperature for the
two-dimensional planar rotator model in the presence of nonmagnetic impurity
concentration . As expected, our calculation shows that the BKT
temperature decreases as the spin vacancies increase. There is a critical
dilution at which . The effective interaction
between a vortex-antivortex pair and a static nonmagnetic impurity is studied
analytically. A simple phenomenological argument based on the pair-impurity
interaction is proposed to justify the simulations.Comment: 5 pages, 5 figures, Revetex fil
Quantum effective potential for U(1) fields on S^2_L X S^2_L
We compute the one-loop effective potential for noncommutative U(1) gauge
fields on S^2_L X S^2_L. We show the existence of a novel phase transition in
the model from the 4-dimensional space S^2_L X S^2_L to a matrix phase where
the spheres collapse under the effect of quantum fluctuations. It is also shown
that the transition to the matrix phase occurs at infinite value of the gauge
coupling constant when the mass of the two normal components of the gauge field
on S^2_L X S^2_L is sent to infinity.Comment: 13 pages. one figur
ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS
We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as "dark." Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z ≾ 4 (110709B) and z ≈ 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A_V^(host) ≳ 5.3 mag and GRB 111215A requires A_V^(host) ≳ 8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N H, int ≳ 10^(22) cm^(–2) (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A_V -N_H relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E_γ + E_K ≈ (7-9) × 10^(51) erg (z = 2) expanding into a wind medium with a high density, Ṁ ≈ (6-20) x 10^(-5) M_☉ yr^(–1) (n ≈ 100-350 cm^(–3) at ≈ 10^(17) cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors
A burst with double radio spectrum observed up to 212 GHz
We study a solar flare that occurred on September 10, 2002, in active region
NOAA 10105 starting around 14:52 UT and lasting approximately 5 minutes in the
radio range. The event was classified as M2.9 in X-rays and 1N in H\alpha.
Solar Submillimeter Telescope observations, in addition to microwave data give
us a good spectral coverage between 1.415 and 212 GHz. We combine these data
with ultraviolet images, hard and soft X-rays observations and full-disk
magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic
Imaging data are used to identify the locations of X-ray sources at different
energies and to determine the X-ray spectrum, while ultra violet images allow
us to characterize the coronal flaring region. The magnetic field evolution of
the active region is analyzed using Michelson Doppler Imager magnetograms. The
burst is detected at all available radio-frequencies. X-ray images (between 12
keV and 300 keV) reveal two compact sources and 212 GHz data, used to estimate
the radio source position, show a single compact source displaced by 25" from
one of the hard X-ray footpoints. We model the radio spectra using two
homogeneous sources, and combine this analysis with that of hard X-rays to
understand the dynamics of the particles. Relativistic particles, observed at
radio wavelengths above 50 GHz, have an electron index evolving with the
typical soft-hard-soft behaviour.Comment: Submitted to Solar Physics, 20 pages, 8 fugure
Soil organisms in organic and conventional cropping systems.
Apesar do crescente interesse pela agricultura orgânica, são poucas as informações de pesquisa disponíveis sobre o assunto. Assim, num Argissolo Vermelho-Amarelo distrófico foram comparados os efeitos de sistemas de cultivo orgânico e convencional, para as culturas do tomate (Lycopersicum esculentum) e do milho (Zea mays), sobre a comunidade de organismos do solo e suas atividades. As populações de fungos,bactérias e actinomicetos, determinadas pela contagem de colônias em meio de cultura, foram semelhantes para os dois sistemas de produção. A atividade microbiana, avaliada pela evolução de CO2, manteve-se superior no sistema orgânico, sendo que em determinadas avaliações foi o dobro da evolução verificada no sistema convencional. O número de espécimes de minhoca foi praticamente dez vezes maior no sistema orgânico. Não foi observada diferença na taxa de decomposição de matéria orgânica entre os dois sistemas. De modo geral, o número de indivíduos de microartrópodos foi superior no sistema orgânico do que no sistema convencional, refletindo no maior índice de diversidade de Shannon. As maiores populações de insetos foram as da ordem Collembola, enquanto para os ácaros a maior população foi a da superfamília Oribatuloidea. Indivíduos dos grupos Aranae, Chilopoda, Dyplopoda, Pauropoda, Protura e Symphyla foram ocasionalmente coletados e de forma similar entre os sistemas
Towards Noncommutative Fuzzy QED
We study in one-loop perturbation theory noncommutative fuzzy quenched QED_4.
We write down the effective action on fuzzy S**2 x S**2 and show the existence
of a gauge-invariant UV-IR mixing in the model in the large N planar limit. We
also give a derivation of the beta function and comment on the limit of large
mass of the normal scalar fields. We also discuss topology change in this 4
fuzzy dimensions arising from the interaction of fields (matrices) with
spacetime through its noncommutativity.Comment: 33 page
A mean-field kinetic lattice gas model of electrochemical cells
We develop Electrochemical Mean-Field Kinetic Equations (EMFKE) to simulate
electrochemical cells. We start from a microscopic lattice-gas model with
charged particles, and build mean-field kinetic equations following the lines
of earlier work for neutral particles. We include the Poisson equation to
account for the influence of the electric field on ion migration, and
oxido-reduction processes on the electrode surfaces to allow for growth and
dissolution. We confirm the viability of our approach by simulating (i) the
electrochemical equilibrium at flat electrodes, which displays the correct
charged double-layer, (ii) the growth kinetics of one-dimensional
electrochemical cells during growth and dissolution, and (iii) electrochemical
dendrites in two dimensions.Comment: 14 pages twocolumn, 17 figure
- …
