102 research outputs found

    USE OF HISTORICAL AERIAL IMAGES FOR 3D MODELLING OF GLACIERS IN THE PROVINCE OF TRENTO

    Get PDF
    Abstract. Historical aerial images represent a source of information of great value for glacier monitoring, as they cover the area of interest at a well-defined epoch and allow for visual interpretation and metric analysis. Typically, the aerial images are used to produce orthophotos and manually digitize the perimeters of the glaciers for analysis of the surface extent of the glaciers, while the extraction of height information is more challenging due to data quality and characteristics. This article discusses the potential of historical aerial images for glacier modelling. More specifically, it analyses the impact of their coverage, radiometric- and geometric accuracy, state of preservation and completeness on the photogrammetric workflow. The data set used consists of scans of 300 (analog) aerial images acquired between August and October 1954 by the U.S. Air Force with a Fairchild KF7660 camera over the entire Province of Trento. For the modelling of the glaciers, different techniques such as manual stereoscopic measurement and dense image matching were tested on sample glaciers and the results were analysed in detail. Due to local radiometric saturation in a large part of the glacial surfaces and other disturbances affecting the historical images (e.g. scratches, scanning errors, dark shadows), dense image matching did not produce any valuable results, and stereo plotting could be used only on images (or image parts) with acceptable quality. The derived Digital Terrain Models (DTMs) were compared with a reference DTM obtained with dense image matching from digital aerial images acquired in September 2015 with an UltraCam Eagle sensor, and, for some glaciers, to a DTM obtained with dense image matching from scanned aerial images acquired in September 1983 with a RC30 analog camera. The differences between 1954 and 2015 DTMs showed values up to 70–80 m in height and a behaviour that is confirmed by the models employed by the glaciology experts in Trento

    Diversidade de minhocas e atributos químicos em sistemas de plantio direto e integração lavoura-pecuária do oeste catarinense.

    Get PDF
    Resumo também apresentado no CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO, 2., 2012, São Leopoldo. Mostra de iniciação científica da UNISINOS. São Leopoldo: Casa Leiria, 2012. e-book. II CICPG. Disposição dos autores: ORSO, R.; BARTZ, M. L. C.; BROWN, G. G.; KLAUBER FILHO, O.; ROSA, M. G. da; LOCATELLI, M.; ZORTÉA, T.; CASAROTTO, K.; DECÄENS, T.; BARETTA, D

    Low-lying Neutron Unbound States In Be-12

    Get PDF
    The neutron decay of an unbound resonance in Be-12 has been measured at 1243 +/- 21 keV decay energy with a width of 634 +/- 60 keV. This state was populated with a one-proton removal reaction from a 71 MeV/u B-13 beam incident upon a beryllium target. The invariant mass reconstruction of the resonance was achieved by measuring the daughter fragment in coincidence with neutrons. Despite being above the 2n separation energy, the state decays predominantly by the emission of one neutron to Be-11, setting an upper limit on the branching ratio for the two-neutron decay channel to Be-10 of less than 5%. From the characteristics of the population and decay of the resonance, it is concluded that this state cannot correspond to the previously observed state at 4580 +/- 5 keV

    PerBrain: a multimodal approach to personalized tracking of evolving state-of-consciousness in brain-injured patients: protocol of an international, multicentric, observational study

    Get PDF
    BACKGROUND: Disorders of consciousness (DoC) are severe neurological conditions in which consciousness is impaired to various degrees. They are caused by injury or malfunction of neural systems regulating arousal and awareness. Over the last decades, major efforts in improving and individualizing diagnostic and prognostic accuracy for patients affected by DoC have been made, mainly focusing on introducing multimodal assessments to complement behavioral examination. The present EU-funded multicentric research project “PerBrain” is aimed at developing an individualized diagnostic hierarchical pathway guided by both behavior and multimodal neurodiagnostics for DoC patients. METHODS: In this project, each enrolled patient undergoes repetitive behavioral, clinical, and neurodiagnostic assessments according to a patient-tailored multi-layer workflow. Multimodal diagnostic acquisitions using state-of-the-art techniques at different stages of the patients’ clinical evolution are performed. The techniques applied comprise well-established behavioral scales, innovative neurophysiological techniques (such as quantitative electroencephalography and transcranial magnetic stimulation combined with electroencephalography), structural and resting-state functional magnetic resonance imaging, and measurements of physiological activity (i.e. nasal airflow respiration). In addition, the well-being and treatment decision attitudes of patients’ informal caregivers (primarily family members) are investigated. Patient and caregiver assessments are performed at multiple time points within one year after acquired brain injury, starting at the acute disease phase. DISCUSSION: Accurate classification and outcome prediction of DoC are of crucial importance for affected patients as well as their caregivers, as individual rehabilitation strategies and treatment decisions are critically dependent on the latter. The PerBrain project aims at optimizing individual DoC diagnosis and accuracy of outcome prediction by integrating data from the suggested multimodal examination methods into a personalized hierarchical diagnosis and prognosis procedure. Using the parallel tracking of both patients’ neurological status and their caregivers’ mental situation, well-being, and treatment decision attitudes from the acute to the chronic phase of the disease and across different countries, this project aims at significantly contributing to the current clinical routine of DoC patients and their family members. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04798456. Registered 15 March 2021 – Retrospectively registered

    Pathogenic variants of Valosin-containing protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells

    Get PDF
    Aim: Mutations in the valosin-containing protein (VCP) gene cause various lethal proteinopathies that mainly include inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). Different pathological mechanisms have been proposed. Here, we define the impact of VCP mutants on lysosomes and how cellular homeostasis is restored by inducing autophagy in the presence of lysosomal damage. Methods: By electron microscopy, we studied lysosomal morphology in VCP animal and motoneuronal models. With the use of western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and filter trap assay, we evaluated the effect of selected VCP mutants in neuronal cells on lysosome size and activity, lysosomal membrane permeabilization and their impact on autophagy. Results: We found that VCP mutants induce the formation of aberrant multilamellar organelles in VCP animal and cell models similar to those found in patients with VCP mutations or with lysosomal storage disorders. In neuronal cells, we found altered lysosomal activity characterised by membrane permeabilization with galectin-3 redistribution and activation of PPP3CB. This selectively activated the autophagy/lysosomal transcriptional regulator TFE3, but not TFEB, and enhanced both SQSTM1/p62 and lipidated MAP1LC3B levels inducing autophagy. Moreover, we found that wild type VCP, but not the mutants, counteracted lysosomal damage induced either by trehalose or by a mutant form of SOD1 (G93A), also blocking the formation of its insoluble intracellular aggregates. Thus, chronic activation of autophagy might fuel the formation of multilamellar bodies. Conclusion: Together, our findings provide insights into the pathogenesis of VCP-related diseases, by proposing a novel mechanism of multilamellar body formation induced by VCP mutants that involves lysosomal damage and induction of lysophagy

    Are there islands of awareness?

    Get PDF
    Ordinary human experience is embedded in a web of causal relations that link the brain to the body and the wider environment. However, there might be conditions in which brain activity supports consciousness even when that activity is fully causally isolated from the body and its environment. Such cases would involve what we call ‘islands of awareness’: conscious states that are neither shaped by sensory input nor able to be expressed by motor output. This paper considers conditions in which such islands might occur, including ex cranio brains, hemispherotomy, and in cerebral organoids. We examine possible methods for 2 detecting islands of awareness, and consider their implications for ethics and for the nature of consciousness

    New Insights into Alzheimer's Disease Progression: A Combined TMS and Structural MRI Study

    Get PDF
    BACKGROUND: Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas. METHODOLOGY AND PRINCIPAL FINDINGS: To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness. CONCLUSIONS: In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD
    corecore