1,422 research outputs found

    Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the Boltzmann constant

    Full text link
    We report on a new optical implementation of primary gas thermometry based on laser absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν210+ν3\nu_{1} + 2 \nu_{2}^{\phantom{1}0} + \nu_{3} transition in CO2_{2} gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of 1.6×104\sim1.6\times10^{-4}.Comment: Submitted to Physical Review Letter

    Magnetic field dependence of charge stripe order in La2-xBaxCuO4 (x~1/8)

    Full text link
    We have carried out a detailed investigation of the magnetic field dependence of charge ordering in La2-xBaxCuO4 (x~1/8) utilizing high-resolution x-ray scattering. We find that the charge order correlation length increases as the magnetic field greater than ~5T is applied in the superconducting phase (T=2K). The observed unusual field dependence of the charge order correlation length suggests that the static charge stripe order competes with the superconducting ground state in this sample.Comment: 4 pages, 4 figure

    Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1x_{1-x}Lax_x)3_3Ir2_2O7_7

    Get PDF
    We use resonant elastic and inelastic X-ray scattering at the Ir-L3L_3 edge to study the doping-dependent magnetic order, magnetic excitations and spin-orbit excitons in the electron-doped bilayer iridate (Sr1x_{1-x}Lax_{x})3_3Ir2_2O7_7 (0x0.0650 \leq x \leq 0.065). With increasing doping xx, the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order from x=0x = 0 to 0.050.05, followed by a transition to two-dimensional short range order between x=0.05x = 0.05 and 0.0650.065. Following the evolution of the antiferromagnetic order, the magnetic excitations undergo damping, anisotropic softening and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1x_{1-x}Lax_x)3_3Ir2_2O7_7 into a correlated metallic state hosting two-dimensional short range antiferromagnetic order and strong antiferromagnetic fluctuations of Jeff=12J_{\text{eff}} = \frac{1}{2} moments, with the magnon gap strongly suppressed.Comment: 6 Pages, 3 Figures, with supplementary in Sourc

    Angular dependence of the magnetization of isotropic superconductors: which is the vortex direction?

    Full text link
    We present studies of the dc magnetization of thin platelike samples of the isotropic type II superconductor PbTl(10%), as a function of the angle between the normal to the sample and the applied magnetic field H{\bf H}. We determine the magnetization vector M{\bf M} by measuring the components both parallel and normal to H{\bf H} in a SQUID magnetometer, and we further decompose it in its reversible and irreversible contributions. The behavior of the reversible magnetization is well understood in terms of minimization of the free energy taking into account geometrical effects. In the mixed state at low fields, the dominant effect is the line energy gained by shortening the vortices, thus the flux lines are almost normal to the sample surface. Due to the geometrical constrain, the irreversible magnetization Mirr{\bf M}_{irr} remains locked to the sample normal over a wide range of fields and orientations, as already known. We show that in order to undestand the angle and field dependence of the modulus of Mirr{\bf M}_{irr}, which is a measure of the vortex pinning, and to correctly extract the field dependent critical current density, the knowledge of the modulus and orientation of the induction field B{\bf B} is required.Comment: 11 pages, 6 figure

    Properties of charge density waves in La2x_{2-x}Bax_{x}CuO4_4

    Full text link
    We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in La2xBaxCuO4(x1/8)\rm La_{2-x}Ba_xCuO_4 (x \approx 1/8), for which the superconducting TcT_c is greatly suppressed. Strong superlattice reflections corresponding to static ordering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring CuO2\rm CuO_2 planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at 230A˚\sim 230\AA, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.Comment: 11 pages, 9 figure

    Latent inhibition as a Model of Schizophrenia: from Learning to Psychopathology

    Get PDF
    In schizophrenia, attentional processes may be altered and become the basis of another symptomatology such as delirium and hallucinations. One of the experimental approaches to the study of attentional processes employs the phenomenon of latent inhibition. Behaviourally, latent inhibition is expressed as a delay or difficulty in learning the relationship between stimuli due to prior experience of the subject with one of the inconsequential stimuli. This learning phenomenon fulfils an adaptive function that enables the organism to release attention from irrelevant stimuli. Schizophrenics do not show this latent inhibition effect due to attentional alterations, that is, they have selective attention difficulties. Clinical data coincide with results obtained from both animals and normal subjects and with data from psychopharmacological studies. Most of the studies show that the dopaminergic system plays an important role in latent inhibition and therefore would support the dopaminergic hypothesis of schizophrenia. Furthermore, latent inhibition is used as a model to evaluate the mechanisms of antipsychotic drug action, as well as for the study of the aetiology of schizophrenia. Finally, latent inhibition opens a line of research in cognitive inhibition processes in schizotypy and the possibility of studying other psychopathological disorders. The model proposed is based on experimental, neurochemical and clinical premises that make it a promising topic of future for research
    corecore