6,391 research outputs found

    Design guidelines for use of adhesives and organic coatings in hybrid microcircuits

    Get PDF
    A study was conducted to investigate the reliability of organic adhesives in hybrid microcircuits. The objectives were twofold: (1) to identify and investigate problem areas that could result from the use of organic adhesives and (2) to develop evaluation tests to quantify the extent to which these problems occur for commercially available adhesives. Efforts were focused on electrically conductive adhesives. Also, a study was made to evaluate selected organic coatings for contamination protection for hybrid microcircuits

    Solar Sail Simplified Optimal Control Law for Reaching High Heliocentric Distances

    Get PDF
    The aim of this paper is to analyze optimal trajectories of a solar sail-based spacecraft in missions towards the outer Solar System region. The paper proposes a simplified approach able to estimate the minimum flight time required to reach a given (sufficiently high) heliocentric distance. In particular, the effect of a set of solar photonic assists on the overall mission performance is analyzed with a simplified numerical approach. A comparison with results taken from the existing literature show the soundness of the proposed approach

    Artificial Collinear Lagrangian Point Maintenance With Electric Solar Wind Sail

    Get PDF
    This article discusses the maintenance of an L-1-type artificial equilibrium point in the Sun-[Earth+Moon] circular restricted three-body problem by means of an electric solar wind sail. The reference configuration instability is compensated for with a feedback control law that adjusts the grid voltage as a function of the distance from the natural L-1 point. Two different control strategies are analyzed assuming the solar wind fluctuations to be modeled through a statistical approach

    Electric sail phasing maneuvers for constellation deployment

    Get PDF
    The aim of this work is to investigate heliocentric phasing maneuvers performed by a spacecraft propelled by an Electric Solar Wind Sail, that is, an innovative propellantless propulsion system that consists of a spinning grid of charged tethers that uses solar wind momentum to produce thrust. It is assumed that the Electric Solar Wind Sail may be controlled by varying its attitude with respect to a classical orbital reference frame, and by switching the tether grid off to obtain Keplerian arcs along its phasing trajectory. The analysis is conducted within an optimal framework, the aim of which is to find both the optimal control law and the minimum-time phasing trajectory for a given angular drift along the (assigned) working orbit. A typical phasing scenario is analyzed, by considering either a drift ahead or a drift behind maneuver on a circular, heliocentric orbit of given radius. The paper also investigates the possibility of using an Electric Solar Wind Sail-based deployer to place a constellation of satellites on the same working orbit. In that case, the optimal flight time is obtained in a compact, semianalytical form as a function of both the propulsion system performance and the number of the sail-deployed satellites

    Electric Sail Phasing Maneuvers for Constellation Deployment

    Get PDF
    The aim of this work is to investigate heliocentric phasing maneuvers performed by a spacecraft propelled by an Electric Solar Wind Sail, an innovative propellantless propulsion system. It is assumed that the sail may be controlled by varying its attitude, and by switching the tether grid off to obtain Keplerian arcs in the trajectory. The analysis is conducted within an optimal framework, whose aim is to find the minimum-time phasing trajectory for a given angular drift, and the corresponding time variation of the control variables. A typical phasing scenario is analyzed, by considering either a drift ahead or a drift behind maneuver option. We also investigate the possibility of using an Electric Solar Wind Sail-based deployer to place a constellation of satellites on the same heliocentric circular orbit. The corresponding flight times are obtained as a function of the sail performance and the number of satellites

    Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results

    Get PDF
    A formulation of the generalized minimal output entropy conjecture for Gaussian channels is presented. It asserts that, for states with fixed input entropy, the minimal value of the output entropy of the channel (i.e. the minimal output entropy increment for fixed input entropy) is achieved by Gaussian states. In the case of centered channels (i.e. channels which do not add squeezing to the input state) this implies that the minimum is obtained by thermal (Gibbs) inputs. The conjecture is proved to be valid in some special cases.Comment: 7 pages, updated version minor typos correcte

    Prediction of extreme events in the OFC model on a small world network

    Full text link
    We investigate the predictability of extreme events in a dissipative Olami-Feder-Christensen model on a small world topology. Due to the mechanism of self-organized criticality, it is impossible to predict the magnitude of the next event knowing previous ones, if the system has an infinite size. However, by exploiting the finite size effects, we show that probabilistic predictions of the occurrence of extreme events in the next time step are possible in a finite system. In particular, the finiteness of the system unavoidably leads to repulsive temporal correlations of extreme events. The predictability of those is higher for larger magnitudes and for larger complex network sizes. Finally, we show that our prediction analysis is also robust by remarkably reducing the accessible number of events used to construct the optimal predictor.Comment: 5 pages, 4 figure

    Nonadditive entropy and nonextensive statistical mechanics - Some central concepts and recent applications

    Full text link
    We briefly review central concepts concerning nonextensive statistical mechanics, based on the nonadditive entropy Sq=k1ipiqq1(qR;S1=kipilnpi)S_q=k\frac{1-\sum_{i}p_i^q}{q-1} (q \in {\cal R}; S_1=-k\sum_{i}p_i \ln p_i). Among others, we focus on possible realizations of the qq-generalized Central Limit Theorem, including at the edge of chaos of the logistic map, and for quasi-stationary states of many-body long-range-interacting Hamiltonian systems.Comment: 15 pages, 9 figs., to appear in Journal of Physics: Conf.Series (IOP, 2010

    Analysis of Self-Organized Criticality in the Olami-Feder-Christensen model and in real earthquakes

    Full text link
    We perform a new analysis on the dissipative Olami-Feder-Christensen model on a small world topology considering avalanche size differences. We show that when criticality appears the Probability Density Functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behaviour does not depend on the time interval adopted and is found also when considering energy differences between real earthquakes. Such a result can be analytically understood if the sizes (released energies) of the avalanches (earthquakes) have no correlations. Our findings support the hypothesis that a self-organized criticality mechanism with long-range interactions is at the origin of seismic events and indicate that it is not possible to predict the magnitude of the next earthquake knowing those of the previous ones.Comment: 5 pages, 3 figures. New version accepted for publication on PRE Rapid Communication
    corecore