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Electric sail phasing maneuvers for constellation deployment

L. Niccolai∗, A. Caruso†, A. A. Quarta‡, and G. Mengali§
Department of Civil and Industrial Engineering, University of Pisa, Italy, I-56122

The aim of this work is to investigate heliocentric phasing maneuvers performed by a
spacecraft propelled by an Electric Solar Wind Sail, an innovative propellantless propulsion
system. It is assumed that the sail may be controlled by varying its attitude, and by switching
the tether grid off to obtain Keplerian arcs in the trajectory. The analysis is conducted within
an optimal framework, whose aim is to find the minimum-time phasing trajectory for a given
angular drift, and the corresponding time variation of the control variables. A typical phasing
scenario is analyzed, by considering either a drift ahead or a drift behind maneuver option.
We also investigate the possibility of using an Electric Solar Wind Sail-based deployer to place
a constellation of satellites on the same heliocentric circular orbit. The corresponding flight
times are obtained as a function of the sail performance and the number of satellites.

Nomenclature

a = propulsive acceleration vector, [mm/s2]
ac = characteristic acceleration, [mm/s2]
ar , aθ = propulsive acceleration components, [mm/s2]
H = Hamiltonian function
J = performance index
mpay = payload mass, [kg]
mtot = total mass, [kg]
N = number of satellites
n̂ = normal unit vector
r̂ = radial unit vector
r = Sun-spacecraft distance, [au]
r⊕ = Sun-Earth distance (1 au)
t = time instant, [TU]
u, v = spacecraft velocity components, [au/DU]
v = spacecraft orbital velocity vector, [au/TU]
αn = pitch angle, [deg]
αp = primer vector angle, [deg]
∆φ = angular drift, [deg]
θ = angular coordinate, [deg]
λr , λθ , λu , λv = adjoint variables
µ� = Sun’s gravitational parameter, [au3/TU2]
τ = switching parameter
ω = angular velocity, [TU−1]

Subscripts

0 = initial time instant
A = drift ahead
B = drift behind
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f = final time instant
i = i-th trajectory arc
max = maximum
tr = threshold value

Superscripts

· = time derivative
− = design value
? = optimal

1. Introduction

Since the dawn of space exploration, the study of the Sun and the main properties of the heliosphere have much
attracted the interest of the scientific community. The first and more obvious reason is that some catastrophic solar
events, such as coronal mass ejections (CMEs), could cause damages on orbiting spacecraft and eventually induce
communication problems on the Earth. It is therefore important to guarantee the possibility of obtaining an early
warning of such events. Moreover, a deeper understanding of the solar behaviour could increase our knowledge of other
Sun-related phenomena, such as solar irradiance cycles and solar wind properties, which have a high impact on Earth
environment and climate, and on operating satellites. The first mission totally dedicated to the scientific investigation of
the Sun’s characteristics was Helios 1 [1], which provided relevant data on the solar wind and the corona. In 1980,
NASA launched the Solar Maximum Mission [2], aimed at studying solar flares and high-energy components of the
Sun’s spectrum during its solar maximum, and a similar investigation was later conducted by the Japanese mission
Yohkoh [3], launched in 1991. The lack of information about high-latitude solar zones was an important motivation for
the Ulysses mission [4], which collected important data on the polar regions of the Sun [5].

More recently, three satellites have been placed in the vicinity of the L1 collinear Lagrangian point of the Sun-Earth
gravitational field [6]. NASA’s Advanced Composition Explorer [7] is orbiting on a small-amplitude Lissajous orbit
and is devoted to the study of solar wind and cosmic rays, whereas the WIND [8] mission is concentrated on the solar
wind. Finally, the Solar and Heliospheric Observatory (SOHO) [9], a joint mission between ESA and NASA, is tracking
a Halo orbit around L1 and is equipped with several scientific instruments, aimed at analyzing the solar surface and
atmosphere, the corona, and the solar wind. In this context, the use of a propellantless propulsion system could allow an
artificial Lagrangian (L1-type) point closer to the Sun to be generated [10–12].

The most recent Sun-focused mission is the NASA’s Parker Solar Probe [13], launched in August 2018, which will
perform three close passages to the Sun, but a potentially revolutionary new approach for solar scientific investigations
has been tested by the Solar Terrestrial Relations Observatory (STEREO) mission [14], launched in 2006 and operative
until 2016. STEREO was made of two twin spacecraft, one drifting ahead of the Earth and one behind it, thus providing
three-dimensional stereoscopic images of the Sun. The angular drift of the two satellites was obtained thanks to a
slightly different semimajor axis of their orbits, but a similar result could likewise be obtained by means of a heliocentric
phasing maneuver, which could be performed by a spacecraft equipped with a propellantless propulsion system [15, 16].

The aim of this paper is to investigate the performance of the Electric Solar Wind Sail (or E-sail) [17], a recent
propellantless propulsion system, in a heliocentric phasing mission scenario. In particular, the objective is to extend
previous preliminary results [16], by means of the thrust model suggested by Huo et al. [18]. The analysis of a
phasing maneuver can be addressed with two different strategies. The first one involves the Hill-Clohessy-Wiltshire
equations [19], which are valid as long as the distance between the instantaneous position of the spacecraft and that
of the reference (working) orbit is sufficiently small. The integration of these equations provides a set of analytical
expressions that give the spacecraft position as a function of time [20], so that the required maneuver time and the
angular displacement can be calculated once the E-sail (fixed) attitude is chosen. However, such an approach has two
important intrinsic limitations. First, its accuracy is limited by the assumption that the spacecraft remains close to the
initial heliocentric orbit. Moreover, it does not permit a variation of the E-sail attitude to be considered and, for that
reason, the resultant trajectories could be quite different from an optimal solution.

Accordingly, in this work phasing maneuvers are analyzed within an optimal approach, by minimizing the required
flight time [21] and using the nonlinear equations of motion in a heliocentric framework. In particular, the optimal
control law of the E-sail attitude and the corresponding minimum maneuver time are obtained by means of an indirect
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approach. The system performance is analyzed within two different mission cases, that is, either a conventional
heliocentric phasing maneuver, or the deployment of a constellation of equally-spaced spacecraft on the same (circular)
heliocentric orbit. Both scenarios are discussed in the next section.

2. Problem description

A heliocentric phasing maneuver consists in varying the angular position of a spacecraft along its orbit, without
affecting the other orbital parameters [22, 23]. Phasing trajectories are usually classified into drift ahead or drift behind
maneuvers. In the former (latter) case, the final spacecraft angular coordinate is greater (smaller) than that of a virtual
point which tracks its initial heliocentric orbit. The two previous cases are both shown in Fig 1, which illustrates a
drift ahead (or behind) maneuver with respect to the Earth, assuming that the spacecraft leaves the Earth’s sphere of
influence with zero excess velocity relative to it.

A phasing trajectory may be obtained in a very simple way, with a bi-impulsive maneuver by means of a chemical
thruster, in which the two impulses give the same velocity variation and are both tangentially directed. This approach,
however, usually requires a large amount of propellant consumption. Therefore, the possibility of exploiting a low-thrust
propellantless propulsion system for such purpose is an interesting option. In particular, the problem of investigating
a solar sail-enabled phasing maneuver has been investigated at length in the literature [15, 24, 25], with possible
applications involving a Smart Dust [20, 26], a miniaturized femtosatellite with a high area-to-mass ratio [27]. Some
results exist also for a spacecraft propelled by an E-sail [16], even though they are based on a quite simplified thrust
model.

A special applications of (consecutive) phasing maneuvers consists in a constellation deployment by means of a
“deployer” spacecraft. Such a mission involves an E-sail-based deployer whose payload is constituted by N ≥ 2 small
satellites, each one being equipped with a suitable scientific instrumentation. The constellation deployment is achieved
by means of succeeding heliocentric phasing maneuvers. In particular, at the end of each phasing trajectory arc, one
of the satellites stowed in the deployer is ejected (with zero velocity relative to it). Once the whole payload has been
ejected from the deployer, the deployment phase ends, and the satellites are all placed on the same heliocentric orbit
with a prescribed angular separation, thus enabling a scientific observation of the Sun by different locations. Such an
idea may be considered as an important extension of the STEREO mission concept [14].

3. Mathematical model

According to the recent results by Huo et al. [18], the propulsive acceleration vector a generated by an E-sail may be
written as

a = τ
ac
2

( r⊕
r

)
[r̂ + (r̂ · n̂)] (1)

where τ is a switching parameter that accounts for the possibility of switching either on (τ = 1) or off (τ = 0) the electron
gun that maintains the E-sail grid voltage, r⊕ , 1 au is the Sun-Earth distance, r̂ is the Sun-spacecraft unit vector (with
r = ‖r ‖), and n̂ is the unit vector normal to the E-sail plane and directed outwards with respect to the Sun; see Fig. 2.
In Eq. (1), ac is the characteristic acceleration, which depends on the grid voltage and the sail design parameters, and is
usually chosen as the reference performance parameter for an E-sail. The assumption of constant value of ac implies
that the variations of the solar wind properties are neglected to a first order. The interested reader may find more details
on this topic in Refs. [28, 29]. Equation (1) also assumes that the E-sail tethers belong to same plane (that is, the E-sail
has a perfectly flat shape), in accordance with the recent results stating that the thrust magnitude reduction due to tether
inflection is negligible [30–32]. Note that the thrust model of Eq. (1) gives a propulsive acceleration vector a whose
maximum inclination with respect to the radial direction is about 19.5 deg.

Assume now that a spacecraft propelled by an E-sail is covering a circular heliocentric orbit of radius r0, and
its thrust belongs to the orbital plane. Let T(O; r, θ) be a polar heliocentric reference frame, where θ is an angular
coordinate measured counterclockwise from a generic fixed direction. In a two-dimensional motion, the radial (ar ) and
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Figure 1. Conceptual sketch of a phasing maneuver on Earth’s heliocentric orbit starting from the Earth’s
position.

circumferential (aθ ) components of the propulsive acceleration may be written as (see Eq. (1))

ar = τ
ac
4

( r⊕
r

)
[3 + cos (2αn)] (2)

aθ = τ
ac
4

( r⊕
r

)
sin (2αn) (3)

where the pitch angle αn ∈ [−90, 90] deg denotes the angle between r̂ and n̂, and is defined as

αn , sign (v · n̂) arccos (r̂ · n̂) (4)
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Figure 2. Conceptual sketch of the vectors involved in E-sail thrust generation. Adapted from Ref. [28]

where v is the spacecraft velocity vector. Using Eqs. (2) and (3), the spacecraft dynamics may be written in T as follows

Ûr = u (5)

Ûθ = v/r (6)

Ûu = − µ�
r2 +

v2

r
+ τ

ac
4

( r⊕
r

)
[3 + cos (2αn)] (7)

Ûv = −u v

r
+ τ

ac
4

( r⊕
r

)
sin (2αn) (8)

where the dot symbol denotes a time derivative, µ� is the Sun’s gravitational parameter, u and v are the radial and
tangential component of the spacecraft velocity vector v. According to Eqs. (5)–(8), the system dynamics is described
by the four state variables [r, θ, u, v] and the two control variables [τ, αn].

3.1 Trajectory optimization

Let the state variables at the initial time t0 , 0 be

r(t0) = r0, θ(t0) = 0, u(t0) = 0, v(t0) =
√
µ�/r0 (9)

where the angular coordinate has been chosen arbitrarily, without loss of generality, because the reference orbit is
circular. The optimization of a phasing maneuver consists in looking for the control law that minimizes the time
∆t , t f − t0 required for the spacecraft to track the same initial orbit, but with an angular drift ∆φ ∈ [0, 360) deg,
measured counterclockwise from the Sun-spacecraft line at t f . In other terms, the boundary conditions at t f are given by

r(t f ) = r0, θ(t f ) = t f ω0 + ∆φ, u(t f ) = 0, v(t f ) =
√
µ�/r0 (10)

where ω0 ,
√
µ�/r3

0 is the angular velocity on the reference orbit. Denoting with ∆θA or ∆θB the absolute value of the
angular variation in a drift ahead or a drift behind maneuver, respectively, ∆φ is defined as

∆φ ,

{
∆θA drift ahead case
360 deg − ∆θB drift behind case

(11)

in accordance with Fig. 1.
The minimum-time trajectory corresponding to the phasing maneuver with boundary conditions (9) and (10), is

obtained by maximizing the performance index
J , −t f (12)
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The dynamical system defined by Eqs. (5)–(8) admits an Hamiltonian functionH , defined as

H , λr u + λθ
v

r
+ λu

(
− µ�

r2 +
v2

r
+ ar

)
+ λv

(
−u v

r
+ aθ

)
(13)

where ar and aθ are given by Eqs. (2) and (3), while λr , λθ , λu , and λv denote the adjoint variables associated with the
state variables r , θ, u, and v. Their time derivatives are given by the Euler-Lagrange equations as

Ûλr , −
∂H
∂r
= λθ

v

r2 + λu

(
v2

r2 −
2 µ�
r3 +

ar
r

)
+ λv

(
−u v

r2 +
aθ
r

)
(14)

Ûλθ , −
∂H
∂θ
= 0 (15)

Ûλu , −
∂H
∂u
= −λr + λv

v

r
(16)

Ûλv , −
∂H
∂v
= −λθ

1
r
− 2 λu

v

r
+ λv

u
r

(17)

In particular, Eq. (15) states that λθ is a constant of motion.
The optimal phasing trajectory is the solution of a two-point boundary value problem (TPBVP), constituted by

the equations of motion (5)–(8) and the Euler-Lagrange equations (14)–(17), with four boundary conditions at t = t0
(Eqs. (9)) and four at t = t f (Eqs. (10)). The final time t f is obtained by enforcing the transversality condition [33],
which is written from Eq. (12) and the second of Eqs. (10) as

H(t f ) = 1 + λθ

√
µ�

r3
0

(18)

Using the Pontryagin’s maximum principle, the optimal control variables [τ∗, α∗n] at each time instant t are found by
maximizing the Hamiltonian function given by Eq. (13). According to the results by Huo et al. [18], the optimal control
law is given by

τ∗ =
1 + sign

(
1 + 3 cosαp

)
2

(19)

α∗n =
αp

2
(20)

where the angle αp ∈ [−180, 180] deg, defined as

αp , sign (λv) arccos

(
λu√

λu
2 + λv

2

)
(21)

denotes the angle between the Lawden’s primer vector [34] λv , [λu, λv]T and the radial unit vector r̂ .

4. Numerical simulations

The time-optimal phasing maneuvers performed by an E-sail have been investigated with numerical simulations, in
which the differential equations of the TPBVP have been integrated in double precision by means of a variable order
Adams-Bashforth-Moulton solver scheme [35, 36] with absolute and relative errors of 10−12.

4.1 Phasing maneuvers

As a first exemplary case, consider a spacecraft propelled by an E-sail with characteristic acceleration ac = 0.1 mm/s2.
The reference orbit coincides with the Earth’s (circular) heliocentric orbit (r0 = r⊕). This case corresponds to a situation
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in which the spacecraft leaves the planet’s sphere of influence with zero excess velocity. Figure 3 shows the minimum
flight time t f as a function of the angular drift ∆φ given by Eq. (11), in both cases of either drift ahead or drift behind
maneuvers.
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Figure 3. Minimum flight time t f as a function of the angular drift ∆φ when ac = 0.1 mm/s2.

Each value of ∆φ can be obtained, in principle, both with a drift ahead and a drift behind maneuver. When only
the magnitude of the angular drift is relevant for the mission requirements, considering either a drift ahead maneuver
with angular change ∆θA or a drift behind maneuver with ∆θB = ∆θA, the latter choice is better in terms of flight time.
However, when a given angular displacement ∆φ must be obtained (see Eq. (11)), a drift ahead maneuver could be
more convenient, in particular for small values of ∆φ. There exists, however, a threshold value, beyond which a drift
behind maneuver requires a smaller flight time. This is clearly illustrated in Fig. 3, from which the value of ∆φtr is
about 150.7 deg. The global minimum of the flight time, for both cases of drift ahead and drift behind maneuvers,
is reported in Figure 4 as a function of ∆φ. The maximum flight time is obtained when ∆φ = ∆φtr and is equal to
t fmax = 1836 days ' 5 years.
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Figure 4. Global minimum of the flight time t f as a function of the angular drift ∆φ when ac = 0.1 mm/s2.

4.2 Constellation deployment scenario

The constellation deployment scenario has been described in Section 2. The deployer has a total payload mass
mpay = 100 kg, which coincides with the total mass of the N spacecraft stowed within it, and is propelled by an E-sail
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with (initial) characteristic acceleration ac = {0.1, 1}mm/s2. According to the E-sail mass budget model of Ref. [37],
these performance parameters could be achieved by a spacecraft with a total in-flight mass of mtot = {280, 391} kg. The
constellation deployment can be seen as a succession of consecutive phasing maneuvers with the same angular drift
and with identical boundary conditions as those of Eqs. (9) and (10). This is a consequence of the assumption that the
reference orbit is circular, so that the initial value of the angular coordinate may be freely chosen.

Assuming that the first satellite is released in proximity of Earth (just outside its sphere of influence), the trajectory
tracked by the deployer is composed of N − 1 arcs. The angular drift in each arc depends on the number N of satellites
stowed in the deployer. Indeed, if a constellation with equally-spaced elements must be obtained, the angular drift in the
generic i-th trajectory arc is

∆θBi =
360
N

deg for i = 1, 2, . . . , N − 1 (22)

where a drift behind maneuver is assumed, based on the previously discussed results. The value of ∆φi is obtained by
substituting Eq. (22) into Eq. (11). The E-sail characteristic acceleration has a discontinuity at each deployment time
t f i , due to the instantaneous reduction of the total deployer mass. The characteristic acceleration aci during the i-th
trajectory arc is

aci = aci−1

mtot
mtot − mpay(i/N)

for i = 1, 2, . . . , N − 1 (23)

where ac0 = ac is the initial characteristic acceleration. The total maneuver time is simply the sum of all the time
intervals required to perform each phasing maneuver, viz.

t f =
N−1∑
i=1

t fi (24)

Figure 5 shows the values of t fi as a function of the (initial) characteristic acceleration ac and the total number
of satellites N . Once the E-sail characteristic acceleration in the i-th arc is found with Eq. (23), the flight time t fi is
obtained graphically from Fig. 5 as a function of N . Finally, the total time for the constellation deployment is given by
Eq. (24). Table 1 summarizes the results for an E-sail-based constellation deployment for different numbers of satellites
N , assuming an initial characteristic acceleration ac = 0.1 mm/s2

Table 1. Constellation deployment performance as a function of N when ac = 0.1 mm/s2.

∆θBi [deg] N t f [days]
120 3 2385
90 4 3012
72 5 3428
60 6 3799
40 9 4685
30 12 5315

The deployment of a considerable number of satellites requires a very high value of t f . Indeed, even assuming that
the deployer contains just three satellites (i.e. N = 3), the total deployment time amounts to more than 6 years. However,
the mission time could be substantially shortened by increasing the E-sail performance. This is clearly illustrated in
Tab. 2, which reports the same cases as those of Tab. 1, but now assuming ac = 1 mm/s2.

For example, if the deployer inserts N = 3 equally-spaced spacecraft on the reference orbit (i.e. ∆θBi = 120 deg),
the total mission time reduces to 785 days ' 2.15 years. The corresponding trajectory is sketched in Fig. 6, which shows
that the optimal transfer trajectory includes also coasting (Keplerian) arcs, in which τ = 0.
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Figure 5. Time required to accomplish an arc of the constellation deployment mission t fi = t fi (aci , N) when
ac = {0.1, 1}mm/s2.

Table 2. Constellation deployment performance as a function of N when ac = 1 mm/s2.

∆θBi [deg] N t f [days]
120 3 785
90 4 1030
72 5 1241
60 6 1438
40 9 1953
30 12 2407
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Figure 6. Constellation deployment trajectory with ac = 1 mm/s2 and N = 3 (propelled arc: solid line; coasting
arc: dash line; satellite releases: stars; deployed satellite position at t f : circles).

5. Conclusions

This work has presented a preliminary analysis of an optimal phasing maneuver along a circular heliocentric orbit
performed by means of an Electric Solar Wind Sail. Because such a propulsive system allows its thrust to be generated
without the need of any propellant consumption, time-optimal phasing trajectories have been investigated in both cases
of drift ahead and drift behind maneuvers. For a given (fixed) angular displacement, a drift behind maneuver is the most
convenient option in terms of required time.

A special application of phasing maneuvers has been proposed, which consists in a constellation deployment scenario
by means of a deployer spacecraft. The simulation results suggest that a constellation of equally-spaced satellites could
be inserted along the Earth’s heliocentric orbit by a deployer propelled by an electric sail, even though the total required
time becomes reasonable only using a medium- or high-performance E-sail configuration.
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