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A formulation of the generalized minimal output entropy conjecture for Gaussian channels is
presented. It asserts that, for states with fixed input entropy, the minimal value of the output
entropy of the channel (i.e. the minimal output entropy increment for fixed input entropy) is
achieved by Gaussian states. In the case of centered channels (i.e. channels which do not add
squeezing to the input state) this implies that the minimum is obtained by thermal (Gibbs) inputs.
The conjecture is proved to be valid in some special cases.

PACS numbers:

I. INTRODUCTION

Several of the most difficult problems in quantum in-
formation theory [1, 2] deal with optimizations of non-
linear cost functions. In particular, in close analogy to
what is done in the classical theory [3], the efficiency of
a communication line (quantum channel) is measured by
maximizing an entropic functional over the set of possible
channel inputs. Apart from some special cases, such op-
timizations are in general too complex to be performed
explicitly. In an effort to simplify the analysis, several
conjectures were proposed based either on physical intu-
ition or on symmetries of the problem. The most known
is the additivity conjecture recently disproved by Hast-
ings [4]: it claimed that the minimal value of the von
Neumann entropy at the output of a memoryless channel
is achieved by separable input states or, equivalently [5],
that its Holevo capacity [6] is additive. As a consequence
we now know that the classical capacity [7] of a mem-
oryless quantum channel (i.e. the maximum achievable
rate of reliable classical communication) will be in general
difficult to evaluate as it necessarily requires to perform
a nontrivial regularization over infinitely many channel
uses.

Of course it is still possible that special classes of quan-
tum channels will obey additivity rules that would allow
us to simplify their analysis. In particular it is generally
believed that Bosonic Gaussian channels [8–10] should be
one of such classes. As a matter of fact Bosonic Gaussian
channels appear to have a preferred (simple) set of inputs
states (the Gaussian states [11]) over which the optimiza-
tion of the relevant entropic quantities can be performed
simplifying the calculation [12]. Several results support
such belief. In particular the capacity of lossy Gaussian
channels was proved to be additive by explicitly com-
puting its value [13]; for thermalizing channels the min-
imum values of the Rényi entropies were shown to be
additive for integer orders and unconstrained input [14],
and for arbitrary order under the constraint of Gaussian
inputs [15]; finally the degradability and additivity of the

coherent information for some of those channels was es-
tablished in Refs. [16–18]. Partially motivated by the
above results few years ago a conjecture was proposed a
solution of which would allow one to simplify the whole
scenario, allowing for instance a direct computation of
the classical capacity of some Gaussian channels. In par-
ticular it was suggested that the (unconstrained) mini-
mum of the von Neumann [20] or Rényi [21] entropies for
attenuators or additive Gaussian classical noise channels
should be achieved by the vacuum state. Up to now all
attempts to prove this apparently innocuous claim have
failed, including an innovative approach that was recently
presented [22] in which the original conjecture of Ref. [20]
was generalized. The aim of this paper is to review the
problem extending the conjecture to include all Gaussian
channels, and to prove it in some special but not neces-
sarily trivial cases. In our treatment of unbounded oper-
ators arising from Canonical Commutation Relations we
focus on the aspects essential for physical calculations.
A number of analytical complications related to infinite
dimensionality and unboundedness unavoidably arises in
connection with Bosonic systems and Gaussian states. A
detailed treatment of related mathematical tools can be
found in [23, 24] and the references therein.
The paper is organized as follows. In Sec. II the nota-

tions are introduced and the formulation of the conjec-
ture is presented. For channels which admit semigroup
structure we also introduce an infinitesimal version of
the conjecture. In Sec. III we focus on a special class
of channels and introduce a relatively simple argument
based on subadditivity properties of the von Neumann
entropy which allows one to prove the conjecture for some
(lucky) cases. Sec. IV proves the conjecture for a class of
degenerate Gaussian channels. Conclusion and remarks
are given in Sec. V.

II. THE CONJECTURE

Let Φ be a linear, completely positive, trace preserving
(LCPT) map (see, e.g. [2]) which transforms a (possibly
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infinite dimensional) input system A to an output system
B. Indicating with S(HA) the set of density matrices of
the input space, we define SS0

(HA) and S
+
S0
(HA) as the

subsets of S(HA) formed, respectively, by states with
entropy equal to S0 and by states with entropy larger
than or equal to S0, i.e.

SS0
(HA) = {ρ ∈ S(HA) : S(ρ) = S0} , (1)

S
+
S0
(HA) = {ρ ∈ S(HA) : S(ρ) > S0} , (2)

with S(ρ) = −Tr[ρ ln ρ] being the von Neumann en-
tropy [2] of ρ. By the concavity of S one has that
the S

+
S0
(HA) are convex sets which can be expressed

as proper unions of the SS0
(HA), namely S

+
S0
(HA) =

⋃

S>S0
SS(HA). Furthermore they form an ordered fam-

ily under inclusion, i.e.

S
+
S0
(HA) ⊂ S

+
S′
0

(HA) , for all S′
0 > S0. (3)

In particular for S0 = 0, S0(HA) represents the set of
pure state of the system while S

+
0 (HA) coincides with

the whole space S(HA). We are interested in computing
the minimum value that the output entropy S(Φ(ρ)) can
take on the set SS0

(HA), i.e. the quantity

F(Φ;S0) ≡ inf
ρ∈SS0

(HA)
S(Φ(ρ)) . (4)

Due to the concavity of S and the linearity of Φ, such a
minimum can also be expressed as a minimum over the
larger set S+

S0
(HA), i.e.

F(Φ;S0) = inf
ρ∈S

+

S0
(HA)

S(Φ(ρ)) . (5)

For S0 = 0 the quantity (4) provides the (unconstrained)
minimal output entropy of the channel which plays
a fundamental role in quantum communication [1].
(In particular, its additivity property under successive
uses of the channel was recently disproved in Ref. [4].)
Moreover, in the special case in which Φ represents an
attenuator or additive Gaussian classical noise chan-
nels [8] operating on a single Bosonic mode, a conjecture
was proposed in Ref. [20] which, if true, would allow one
to compute in closed form its classical capacity [7] under
the energy constraint. Specifically it was conjectured
that the value of F(Φ;S0 = 0) is attained by a Gaussian
input state. In a recent attempt [22] to prove such a
property, it was recently extended to include all values
of S0 > 0 and a broader class of maps. Indeed consider
a set of n input Bosonic modes and a Gaussian channel
Φ which maps them into m output modes. We remind
that for these systems a state is said to be Gaussian
if its symmetrically ordered characteristic function (or
equivalently its Wigner distribution) corresponds to a
Gaussian envelop [11], whereas a LCPT map is said to
be Gaussian channel if, when acting on a Gaussian state
of the input modes transforms it into an Gaussian state
of the output modes [8–11]. It is claimed that:

Conjecture (v1): For all S0 > 0 the minimiza-
tion in Eq. (4) is saturated by a Gaussian element of the
set SS0

(HA), i.e.

F(Φ;S0) = S(Φ(ρ0)) , (6)

with ρ0 ∈ SS0
(HA) a Gaussian state (notice that for

all S0, the sets SS0
(HA) always admit at least one

Gaussian element).

While in some simple cases the conjecture can be easily
verified, in the general scenario it appears to be partic-
ularly challenging. In the following we will specify the
analysis to the case of single-mode Gaussian channels
(n = m = 1) for which the canonical decomposition of
Φ applies [17, 18]. In particular, it is known that apart
from the special cases which we will treat in Sec. IV, by
making a proper choice of the canonical observables at
the input and the output of the channel one can focus on
centered Gaussian channels which respect the standard
complex structure associated with the multiplication by
i (these channels do not introduce squeezing or displace-
ment). They have the property to induce the following
transformation on the average photon expectation value,

Tr[Φ(ρ)a†a] = κ2 Tr[ρa†a] + c , (7)

where κ and c are constants which depend upon Φ, where
a, a† are the annihilation and creation operator of the
system mode. Specifically attenuator channels are char-
acterized by κ2 ∈ [0, 1] and c = (1 − κ2)N with N > 0,
while amplifier channels are characterized by κ2 > 1 and
c = (κ2− 1)(N +1) where again N > 0, (class C of [17]).
For additive Gaussian classical noise channel (class B2

of [17]) instead one has κ = 1 and c = N . Finally for the
weak conjugate of the amplifier channels (class D of [17])
one has κ2 > 0 and c = κ2(N + 1) + N . Due to the
property (7) one can refine the conjecture (v1) by say-
ing that the state ρ0 ∈ SS0

(H) entering in Eq. (6) is the
(thermal) Gibbs state,

ρ0 =
1

N0 + 1

(

N0

N0 + 1

)a†a

, (8)

with N0 = Tr[a†aρ0] > 0 being the average photon num-
ber of ρ0 which allows to express the input entropy of ρ0
as

S0 = g(N0) ≡ (N0 + 1) ln(N0 + 1)−N0 lnN0, (9)

(for N0 = 0 the the density matrix ρ0 must be identified
with the vacuum state, while S0 = 0). By general prop-
erties of Gibbs states, see e.g. [24], we know that ρ0 is
the element of S+

S0
(H) which has minimal energy, i.e.

N0 6 Tr[a†aρ] , for all ρ ∈ S
+
S0
(H), (10)

the identity applying only for ρ = ρ0. Furthermore, for
the channel under consideration Φ will transform ρ0
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into a new Gibbs state ρ′0 = Φ(ρ0), having mean photon
number N ′

0 = κ2N0+ c with κ, c as in Eq. (7). Therefore
the conjecture can be restated as follows:

Conjecture (v2): For all S0 > 0 the minimiza-
tion in Eq. (4) is saturated by the Gibbs state ρ0 of
Eq. (8).Therefore it holds

F(Φ;S0) = S(Φ(ρ0)) = g(κ2N0 + c) , (11)

or, equivalently, for all ρ ∈ SS0
(H) one has

S(Φ(ρ)) > g(κ2N0 + c) . (12)

The inequality (12) can be cast in a different form by
introducing the relative entropy S(ρ||σ), see e.g. [24].
Indeed, for all ρ ∈ SS0

(H) simple algebraic manipula-
tions allows us to write

S(Φ(ρ))− g(κ2N0 + c) (13)

= κ2
ln
(

κ2N0+c+1
κ2N0+c

)

ln
(

N0+1
N0

) S(ρ||ρ0)− S(Φ(ρ)||Φ(ρ0)) ,

where we used the fact that S(ρ) = S0. This shows that a
necessary and sufficient condition for the conjecture (12)
is the inequality,

κ2
ln
(

κ2N0+c+1
κ2N0+c

)

ln
(

N0+1
N0

) S(ρ||ρ0) > S(Φ(ρ)||Φ(ρ0)) , (14)

which needs to apply to all input states ρ ∈ SS0
(H). It

is worth reminding that the relative entropy is monoton-
ically decreasing under the action of LCPT maps (see,
e.g. [2]), that is S(ρ||ρ0) > S(Φ(ρ)||Φ(ρ0)) for all Φ, ρ
and ρ0. Therefore a sufficient condition to prove Eq. (14)

would be κ2ln
(

κ2N0+c+1
κ2N0+c

)

> ln
(

N0+1
N0

)

. Unfortunately

however, for all values of κ, N0 and c as in Eq. (7) this
inequality is always false (notice that c and k cannot be
taken as independent variables). Incidentally this shows
that proving Eq. (14) (and thus the conjecture) requires
one to go beyond the monotonicity property of the rela-
tive entropy.
For those Gaussian channels Φ which possess a semi-

group structure [19] the conjecture can be rephrased in
terms of a condition on the infinitesimal increments of the
entropy. Specifically let L be a Lindblad generator and
let {Φt : t > 0} be a one-parameter family of Gaussian
LCPT maps which solve the equation

∂

∂t
Φt = L ◦ Φt , Φ0 = I , (15)

with I being the identity channel and ◦ being the com-
position of maps. For instance this property holds for at-
tenuator, amplifier and additive Gaussian classical noise
channels with

L =
γ+
2

L+ +
γ−
2

L− , (16)

where γ± are positive parameters related to κ and c of
Eq. (7) and where

L+(·) = 2a†(·)a− aa†(·)− (·)aa† , (17)

L−(·) = 2a(·)a† − a†a(·)− (·)a†a . (18)

In particular one can easily verify that attenuators form
a semigroup satisfying Eq. (15) with γ+ = N , γ− = N+1
when setting κ2 = e−t. Similarly for the amplifiers we
have γ+ = N + 1, γ− = N by choosing κ2 = et, while
for additive Gaussian classical noise channels we have
γ+ = γ− = 1 when setting N = t.
For each T > 0 we can then express the output entropy

of the map Φt=T in the integral form

S(ΦT (ρ)) = S(ρ)−
∫ T

0

dt Tr[L(Φt(ρ)) ln Φt(ρ)] , (19)

where we used the fact that ∂
∂tS(Φt(ρ)) =

−Tr[L(Φt(ρ)) lnΦt(ρ)]. Due to the identity (19)
we can now present an infinitesimal version of the
conjecture:

Conjecture (v3): For all S0 > 0 define the quantity

F(L;S0) ≡ − inf
ρ∈SS0

(HA)
Tr[L(ρ) ln ρ] , (20)

then the minimization is saturated by the Gibbs state ρ0 ∈
SS0

(HA) defined in Eq. (8), i.e. it holds the identity

F(L;S0) = −Tr[L(ρ0) ln ρ0]
= [(γ+ − γ−)N0 + γ+] ln(

N0+1
N0

) . (21)

Clearly if the conjecture (v2) is true for all discrete
channels ΦT and for all S0, then also the infinitesimal
version (v3) of the conjecture must be true. This follows
simply by the fact that the functional F(L;S0) can be ex-
pressed as the limit for dt → 0 of the minimum value that
the finite entropy increments [S(Φdt(ρ))−S(Φ0(ρ))]/dt =
[S(Φdt(ρ)) − S(ρ)]/dt assume over the set SS0

(HA). Of
course if (v2) is true then for all dt such minimum is
achieved on ρ0, validating Eq. (21). Analogously if the
infinitesimal version (v3) is true for all S0, then all the
channels ΦT generated by L will obey the finite version
(v2) of the conjecture (to verify this simply use the fact
that Gibbs states are mapped into Gibbs states).
Proving or disproving any of the above version of the

conjecture is apparently a formidable task. In the fol-
lowing section we will then focus on some special (non
trivial) cases for which some preliminary results can be
derived.

III. A SPECIAL CASE

As a special class of single mode Gaussian channel Φ
consider an attenuator channel EN

η which mixes via a
beam-splitter (BS) of transmissivity η ∈ [0, 1] the input
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state of the system with a (thermal) Gibbs environmental
state ρE characterized by having N mean photon number
and thus entropy

S(ρE) = g(N) , (22)

with g(·) as in Eq. (9). In the language of Ref. [17] this
map is attenuator belonging to the class C with κ2 = η
and c = (1− η)N in Eq. (7). Alternatively, following the
notation of Ref. [20], it can be expressed in terms of the
following input-output transformation

χ(µ) −→ χ′(µ) = χ(
√
ηµ) e−(1−η)(N+1/2)|µ|2 , (23)

where χ(µ) = Tr[ρD(µ)] and χ′(µ) = Tr[EN
η (ρ)D(µ)]

are the symmetrically ordered characteristic function of
the input and output state of the system, respectively
(D(µ) = exp[µa† − µ∗a] being the displacement opera-
tor of the mode). This channel maps the Gibbs state
ρ0 into a new Gibbs state ρ′0 of average photon number
N ′

0 = ηN0 + (1 − η)N and of output entropy

S(EN
η (ρ0)) = S(ρ′0) = g(N ′

0) = g(ηN0 + (1− η)N).(24)

According to the version (v2) of the conjecture then we
should have F(EN

η ;S0) = g(ηN0 + (1 − η)N), or equiva-
lently

S(EN
η (ρ)) > g(ηN0 + (1− η)N) , (25)

for all ρ ∈ SS0
(H). Also proving this inequality is rather

complicated. In the following we thus focus on the follow-
ing (very) specific configuration where the input entropy
S0 which defines the set SS0

(H) of possible input states
coincides with the entropy of the environment ρE . In
particular due to Eqs. (9) ad (22) this implies that ρE
and ρ0 are indeed the same state, and thus

g(N0) = g(N) ⇐⇒ N = N0 . (26)

Under this condition we first notice that ρ0 is the fixed
point of the map EN0

η , i.e.

EN0

η (ρ0) = ρ0 , (27)

(this can be easily verified from Eq. (23) by reminding
that the symmetrically ordered characteristic function
of the Gibbs state ρ0 is exp[−(N0 + 1/2)|µ|2]). There-
fore proving the inequality (25) (and thus the conjecture
v(2)) is now equivalent to showing that

S(EN0

η (ρ)) > g(N0) , (28)

holds for all ρ ∈ SS0
(H). Equivalently, this can also be

rewritten as (see Eq. (14)),

ηS(ρ||ρ0) > S(EN0

η (ρ)||EN0

η (ρ0)) , (29)

which should again apply to all ρ ∈ SS0
(H). Among

the various properties of the channel EN0
η we remind that

they form a semigroup under multiplication due to the
properties [18, 20]

EN0

η1
◦ EN0

η2
= EN0

η2η1
, EN0

η=1 = I . (30)

Defining thus Φt = EN0

η=e−t the Lindblad generator is eas-

ily derived as in Eq. (16) with γ+ = N0 and γ− = N0+1.
This allows us to rephrase the infinitesimal version (v3)
of the conjecture as

F(L;S0) = −Tr[L(ρ0) ln ρ0] = 0 . (31)

Interestingly enough even though for arbitrary values
of η the inequality (28) is difficult to derive, there are
some special case in which it simply follows by general
consideration on von Neumann entropy. Specifically the
following result can be shown:

Theorem. For arbitrary positive values of N0 > 0, the
inequalities in Eqs. (28) and (29) hold for all η = 1/k
with k integer.

Proof: For k = 1 the result is trivial. For k > 2
it follows from the subadditivity of the von Neumann
entropy. In particular consider first the case of k = 2. In
this case we introduce a unitary representation [17, 18]

of the channel EN0

1/2 constructed by mixing the input

state ρ via a BS of transmissivity η = 1/2 with the
thermal environment ρE , i.e.

EN0

1/2(ρ) = TrE [U
(AE)
1/2 (ρ⊗ ρE)[U

(AE)
1/2 ]†] , (32)

where TrE is the partial trace over the environment and

where U
(AE)
η = exp[arccos

√
η(a†b − ab†)] is the BS uni-

tary coupling which connects A and E (here a and b
stands for the annihilation operators of the two sys-
tems). In this case the weak complementary ẼN0

1/2(· · · ) =
TrA[U

(AE)
1/2 (· · ·⊗ρE)[U

(AE)
1/2 ]†] is known [18, 26] to be uni-

tary equivalent to EN0

1/2 (here TrA indicates the partial

trace over the system degree of freedom). Therefore by
invoking the subadditivity of the von Neumann entropy
we can write,

2S(EN0

1/2(ρ)) = S(EN0

1/2(ρ)) + S(ẼN0

1/2(ρ))

> S(U
(AE)
1/2 (ρ⊗ ρE)[U

(AE)
1/2 ]†) = S(ρ) + S(ρE) = 2g(N0),

which proves the thesis (in the last identity we used the
fact that since ρ ∈ SS0

(H) it has the same entropy
S0 = g(N0) of ρE). For k > 2 we use a similar trick
concatenating more BS transformations in series in order
to obtain a set-up with k output ports and k inputs (one
input for the state ρ and the remaining for k − 1 copies
of ρE). Adjusting the transmissivities of the BS in such
a way to guarantee that all of output ports have overall
transmissivities 1/k we can invoke the subadditivity to
finally derive the inequality

S(EN0

1/k(ρ)) > g(N0) , (33)
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which proves the thesis. More precisely the above con-
struction consists in introducing k− 1 copies of the state
ρE and introducing the following k modes state,

ΩAE1···Ek−1
= ρ⊗ ρE1

⊗ ρE2
⊗ · · · ⊗ ρEk−1

, (34)

which has entropy equal to kg(N0) when ρ ∈ SS0
(HA).

Consider then following unitary couplings

W = UAEk−1

ηk−1
· · ·UAE2

η2
UAE1

η1
, (35)

where for j = 1, · · · , k−1, U
AEj
ηj is the BS unitary trans-

formation of transmissivity ηj which couples A with the
system Ej . The inequality (33) then can be obtained ap-
plying the subadditivity of von Neumann entropy to the
state Ω′

AE1···Ek
= WΩAE1···Ek

W †, i.e. using the relation

S(Ω′
AE1···Ek−1

) 6 S(Ω′
A) +

k−1
∑

j=1

S(Ω′
Ej

) , (36)

where Ω′
A is the reduced matrix of Ω′

AE1···Ek
associated

with the system A, and where for all j = {1, · · · , k − 1}
Ω′

Ej
is the reduced matrix of Ω′

AE1···Ek
associated with

the system Ej . Indeed the left-hand side term of this
expression coincides with the von Neumann entropy of
ΩAE1···Ek

hence

S(Ω′
AE1···Ek−1

) = kg(N0) . (37)

On the other hand we notice that for reduced density
operator of the subsystem A one has,

Ω′
A ≡ TrE1···Ek−1

[Ω′
AE1···Ek−1

]

= EN0

ηk−1
◦ EN0

ηk−2
◦ · · · ◦ EN0

η1
(ρ) = EN0

η̄k
(ρ) , (38)

where we used the semigroup property (30) and defined
η̄k ≡ ηk−1ηk−2 · · · η2η1. Similarly for the reduced density
operator associated with the system E′

1 we notice that

Ω′
E1

≡ TrAE2E3···Ek−1
[Ω′

AE1···Ek−1
]

= TrA[U
(AE1)
η1

(ρ⊗ ρE1
)[U (AE1)

η1
]†] = ẼN0

η1
(ρ) ,

with ẼN0
η1

being the weak-complementary of the channel

EN0
η1

under the unitary representation of Eq. (32). Apart
from an irrelevant unitary rotation, this is know to be
equivalent to the channel EN0

1−η1
[18, 26]. Thus we can

conclude that,

S(Ω′
E1

) = S(ẼN0

η1
(ρ)) = S(EN0

1−η1
(ρ)) . (39)

In a similar fashion we have that for arbitrary j =
1, 2, · · · , k − 1 the reduced density matrices of the sub-
system Ej can be expressed as

Ω′
Ej

= ẼN0

ηj
◦ EN0

ηj−1
◦ EN0

ηj−2
◦ · · · ◦ EN0

η1
(ρ)

= ẼN0

ηj
◦ EN0

ηj−1ηj−2···η1
(ρ) ,

where again the semigroup property (30) was used to sim-
plify the expression. Exploiting then the unitary equiva-
lence between ẼN0

ηj
and EN0

1−ηj
we finally get

S(Ω′
Ej

) = S(ẼN0

ηj
◦ EN0

ηj−1ηj−2···η1
(ρ)) (40)

= S(EN0

1−ηj
◦ EN0

ηj−1ηj−2···η1
(ρ)) = S(EN0

η̄j
(ρ)) ,

with η̄j = (1−ηj)ηj−1ηj−2 · · · η1. Equation (36) can thus
be rewritten as,

kg(N0) 6
k

∑

j=1

S(EN0

η̄j
(ρ)) . (41)

To prove the thesis we need thus only to find ηj such
that η̄j = 1/k for all j = 1, 2, · · · , k. To do so we

take ηj = k−j
k−j+1 for all j = 1, 2, · · · , k − 1. With this

choice the right-hand side term of Eq. (41) becomes
∑k

j=1 S(EN0

η̄j
(ρ)) = kS(EN0

1/k(ρ)) yielding Eq. (33). �

IV. PROOF OF THE CONJECTURE FOR ONE

MODE DEGENERATE GAUSSIAN CHANNELS

In this section we describe the solution of the conjec-
ture (v1) in the cases of one mode degenerate Gaussian
channels. In the canonical form of Ref. [17, 18] they cor-
respond to the classesA1, A2, B1 and are formally charac-
terized by the fact at least one of the two 2× 2 matrices
that describe their action on the Weyl operator of the
system is not invertible.
Channels belonging to the class A1 satisfy the equation

χ(µ) −→ χ′(µ) = χ(0) e−(N+1/2)|µ|2 , (42)

which maps any input state into fixed output Gaussian
state (indeed they can be seen are limiting cases of atten-
uators channels (class C) with zero beam splitter trans-
missivity). Hence for these channels, the output entropy
is constant and the problem is trivial.
Case A2 corresponds to the equation

χ(µ) −→ χ′(µ) = χ(−iℑµ) e−(N+1/2)|µ|2 , (43)

where ℑµ is the imaginary part of µ. The channel is
given explicitly by

Φ(ρ) =

∫

eixpρEe
−ixp Pρ(dx), (44)

where ρE is a Gibbs state of mean energy N , p =
i(a† − a)/

√
2 is the momentum quadrature of the sys-

tem, and Pρ(dx) = 〈x|ρ|x〉dx is the probability distribu-

tion of the position operator q = (a†+a)/
√
2 in the state

ρ [27]. It is an entanglement-breaking channel [25] which
describes position measurement followed by preparation
of the state eixpρEe

−ixp shifted by the outcome of the
measurement x. By concavity of the entropy

S(Φ(ρ)) >

∫

S(eixpρEe
−ixp)Pρ(dx) = S(ρE), (45)
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and in fact

inf
ρ∈SS0

(HA)
S(Φ(ρ)) = S(ρE). (46)

To prove this, consider the input Gaussian states ρσq,σp

with zero mean, variances Dq = σ2
q ,Dp = σ2

p, and un-
correlated q, p. The entropy of such states is equal to
S(ρσq,σp

) = g
(σqσp

~
− 1

2

)

. By fixing it equal to S0 and
letting σq → 0, we obtain S(ρ′) → S(ρE).
Case B1 is described by the equation

χ(µ) −→ χ′(µ) = χ(µ) e−(1/2)|ℑµ|2 , (47)

which corresponds to degenerate additive Gaussian clas-
sical noise (only in the component q, with variance 1/2).
In other words

Φ(ρ) =

∫

eixp ρ e−ixpP (dx), (48)

where P (dx) = dx exp[−x2/4]/
√
4π is a Gaussian noise

distribution. Then similarly to the previous case, S(ρ′) >
S(ρ) = S0. Moreover

Φ(ρσq ,σp
) = ρ√σ2

q+1/2,σp
(49)

so fixing S(ρσq,σp
) = S0 and letting σp → 0, we obtain

S(ρ′) → S0. Thus

inf
ρ∈SS0

(HA)
S(Φ(ρ)) = S0. (50)

V. CONCLUSION

In this work we discussed a generalized minimal output
conjecture for Gaussian channels. For degenerate one-
mode quantum channels it has been proved explicitly.
For attenuator channels the conjecture was proved for
some values of the transmissivity, under the assumption
that the input entropy and the entropy of the thermal
state environment coincide.
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