73 research outputs found

    Clément Hébert (a), Davy Carole (c), Franck Omnes (a), Etienne Gheeraert (a)

    Get PDF
    International audienceNanopores in insulating solid state membranes have recently emerged as potential candidates for sorting, probing and manipulating biopolymers, such as DNA, RNA and proteins in their native environment. Here a simple, fast and cost-effective etching technique to create nanopores in diamond membrane by self-assembled Ni nanoparticles is proposed. In this process, a diamond film is annealed with thin Ni layers at 800-850 degrees C in hydrogen atmosphere. Carbon from the diamond-metal interface is removed as methane by the help of Ni nanoparticles as catalyst and consequently, the nanoparticles enter the crystal volume. In order to optimize the etching process and understand the mechanism the annealed polycrystalline and nanocrystalline diamond films were analyzed by X-ray photoelectron spectroscopy (XPS), and the gas composition during the process was investigated by quadrupole mass spectrometer. With this technique, nanopores with lateral size in the range of 15-225 nm and as deep as about 550 nm in diamond membrane were produced without any need for lithography process. A model for etching diamond with Ni explaining the mechanism is discussed

    Germline mutation in the RAD51B gene confers predisposition to breast cancer.

    Get PDF
    International audienceBACKGROUND: Most currently known breast cancer predisposition genes play a role in DNA repair by homologous recombination. Recent studies conducted on RAD51 paralogs, involved in the same DNA repair pathway, have identified rare germline mutations conferring breast and/or ovarian cancer predisposition in the RAD51C, RAD51D and XRCC2 genes. The present study analysed the five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) to estimate their contribution to breast and ovarian cancer predisposition. METHODS: The study was conducted on 142 unrelated patients with breast and/or ovarian cancer either with early onset or with a breast/ovarian cancer family history. Patients were referred to a French family cancer clinic and had been previously tested negative for a BRCA1/2 mutation. Coding sequences of the five genes were analysed by EMMA (Enhanced Mismatch Mutation Analysis). Detected variants were characterized by Sanger sequencing analysis. RESULTS: Three splicing mutations and two likely deleterious missense variants were identified: RAD51B c.452 + 3A > G, RAD51C c.706-2A > G, RAD51C c.1026 + 5_1026 + 7del, RAD51B c.475C > T/p.Arg159Cys and XRCC3 c.448C > T/p.Arg150Cys. No RAD51D and XRCC2 gene mutations were detected. These mutations and variants were detected in families with both breast and ovarian cancers, except for the RAD51B c.475C > T/p.Arg159Cys variant that occurred in a family with 3 breast cancer cases. CONCLUSIONS: This study identified the first RAD51B mutation in a breast and ovarian cancer family and is the first report of XRCC3 mutation analysis in breast and ovarian cancer. It confirms that RAD51 paralog mutations confer breast and ovarian cancer predisposition and are rare events. In view of the low frequency of RAD51 paralog mutations, international collaboration of family cancer clinics will be required to more accurately estimate their penetrance and establish clinical guidelines in carrier individuals

    Environmental footprint family to address local to planetary sustainability and deliver on the SDGs

    Get PDF
    peer-reviewedThe number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators

    EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

    Get PDF
    AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Synthèse de nitrure de titane par combustion autopropagée

    No full text
    LIMOGES-ENSCI (870852305) / SudocMONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Growing 3C-SiC heteroepitaxial layers on α-SiC substrate by vapour–liquid–solid mechanism from the Al–Ge–Si ternary system

    No full text
    International audienceIn this work, we present and compare the results obtained from different Si-based melts (Ge–Si, Al–Si and Al–Ge–Si) for growing SiC layers on α-SiC substrate by vapour–liquid–solid (VLS) mechanism. It was found that, depending on melt composition, the deposit could be either a complete 3C or α-SiC layer or even a mixture of these polytypes. The binary Al–Si melt leads systematically to a highly p-type homoepitaxial α-SiC deposit while Ge–Si melt gives a non-intentional n-type doped layers of either 3C or 6H polytypes depending on growth conditions. However, highly p-type doped 3C heteroepitaxial deposit can be obtained if a small amount of Al is added to the Ge–Si binary liquid phase. This means that the VLS mechanism is very flexible and allows growing either n- or p-type SiC layers of 3C or 6H polytypes

    Exploring SiC Growth Limitation of Vapor-Liquid-Solid Mechanism when Using Two Different Carbon Precursors

    No full text
    International audienceIn this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase

    Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials

    No full text
    International audienceWe used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine (R) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and using two alginate:jeffamine mass ratios. The size of the grafted-alginate microgels varied from 60 to 80 mu m depending on the type of alginate used and the degree of substitution. The droplet-based microfluidics technique offered exquisite control of both the dimension and physical chemical properties of the grafted-alginate microgels. These microgels were therefore comparable to isolated grafted-alginate chains in retaining both their amphiphilic and thermo-sensitive properties. Amphiphilicity was demonstrated at the oil-water interface where grafted-alginate microgels were found to decrease interfacial tension by similar to 50%. The thermo-sensitivity of microgels was clearly demonstrated and a 10 to 20% reduction in size between was evidenced on increasing the temperature above the lower critical solution temperature (T-LCST) of Jeffamine. In addition, the reversibility of thermo-sensitivity was demonstrated by studying the oil-water affinity of microgels with temperature after Congo red labeling. Finally, droplet-based microfluidics was found to be a good and promising tool for generating responsive biobased hydrogels for drug delivery applications and potential new colloidal stabilizers for dispersed systems such as Pickering emulsions. (C) 2015 Elsevier B.V. All rights reserved

    Study of the lateral growth by VLS mechanism using Al-based melts on patterned SiC substrate

    No full text
    International audienceIn this work we report on SiC epitaxial growth by vapour-liquid-solid (VLS) mechanism on on-axis 4H-SiC(0001) substrates which were previously patterned to form mesa structures. The liquid phase was set to Al 70Si 30. At 1100°C, it led to very high homoepitaxial lateral growth (140 μm/h) with pronounced spiral growth and in plane anisotropy of growth rate. Upon temperature increase to 1200 °C, this spiral growth was suppressed and the lateral growth was further increased up to 180 μm/h. The in-plane versus out-of-plane anisotropy of growth rate was found to be as high as 60 at this temperature and 46 at 1100°C
    corecore