293 research outputs found

    Isolation and Culture of Post-Natal Mouse Cerebellar Granule Neuron Progenitor Cells and Neurons

    Get PDF
    The cerebellar cortex is a well described structure that provides unique opportunities for studying neuronal properties and development1,2. Of the cerebellar neuronal types (granule cells, Purkinje cells and inhibitory interneurons), granule neurons are by far the most numerous and are the most abundant type of neurons in the mammalian brain. In rodents, cerebellar granule neurons are generated during the first two post-natal weeks from progenitor cells in the outermost layer of the cerebellar cortex, the external granule layer (EGL). The protocol presented here describes techniques to enrich and culture granule neurons and their progenitor cells from post-natal mouse cerebellum. We will describe procedures to obtain cultures of increasing purity3,4, which can be used to study the differentiation of proliferating progenitor cells into granule neurons5,6. Once the progenitor cells differentiate, the cultures also provide a homogenous population of granule neurons for experimental manipulation and characterization of phenomena such as synaptogenesis, glutamate receptor function7, interaction with other purified cerebellar cells8,9 or cell death7

    Land Use Influences the Composition and Antimicrobial Effects of Propolis

    Get PDF
    Honey bee propolis is a complex, resinous mixture created by bees using plant sources such as leaves, flowers, and bud exudates. This study characterized how cropland surrounding apiaries affects the chemical composition and antimicrobial effects of propolis. The chemical composition and compound abundance of the propolis samples were analyzed using Gas Chromatography- Mass Spectrometry (GC-MS) and the antimicrobial effects were analyzed using the 50% minimum inhibitory concentration (MIC50) assay against four relevant bee pathogens, Serratia marcescens, Paenibacillus larvae, Lysinibacillus sphaericus, and Klebsiella pneumoniae. Propolis composition varied significantly with apiary, and cropland coverage predicted mean sum abundance of compounds. The apiary with the highest cropland coverage exhibited significantly higher MIC50 values for S. marcescens and K. pneumoniae compared to other apiaries. These results demonstrate that agricultural land use surrounding honey bee apiaries decreases the chemical quality and antimicrobial effects of propolis, which may have implications for the impacts of land use on hive immunity to potential pathogens

    Behavioral intervention in adolescents improves bone mass, yet lactose maldigestion is a barrier

    Get PDF
    Calcium intake during adolescence is important for attainment of peak bone mass. Lactose maldigestion is an autosomal recessive trait, leading to lower calcium intake. The Adequate Calcium Today study aimed to determine if a school-based targeted behavioral intervention over one year could improve calcium intake and bone mass in early adolescent girls. The school-randomized intervention was conducted at middle schools in six states over one school year. A total of 473 girls aged 10–13 years were recruited for outcome assessments. Bone mineral content (BMC) was determined by dual energy X-ray absorptiometry. Dietary calcium intake was assessed with a semi-quantitative food frequency questionnaire. Baseline calcium intake and BMC were not significantly different between groups. After the intervention period, there were no differences in changes in calcium intake and BMC at any site between groups. An unanticipated outcome was a greater increase in spinal BMC among lactose digesters than lactose maldigesters in the intervention schools only (12 months) (6.9 ± 0.3 g vs. 6.0 ± 0.4 g, p = 0.03) and considering the entire study period (18 months) (9.9 ± 0.4 vs. 8.7 ± 0.5 g, p < 0.01). Overall, no significant differences between the intervention and control schools were observed. However, lactose digesters who received the intervention program increased bone mass to a greater extent than lactose maldigesters

    PDX Finder: A portal for patient-derived tumor xenograft model discovery.

    Get PDF
    Patient-derived tumor xenograft (PDX) mouse models are a versatile oncology research platform for studying tumor biology and for testing chemotherapeutic approaches tailored to genomic characteristics of individual patients\u27 tumors. PDX models are generated and distributed by a diverse group of academic labs, multi-institution consortia and contract research organizations. The distributed nature of PDX repositories and the use of different metadata standards for describing model characteristics presents a significant challenge to identifying PDX models relevant to specific cancer research questions. The Jackson Laboratory and EMBL-EBI are addressing these challenges by co-developing PDX Finder, a comprehensive open global catalog of PDX models and their associated datasets. Within PDX Finder, model attributes are harmonized and integrated using a previously developed community minimal information standard to support consistent searching across the originating resources. Links to repositories are provided from the PDX Finder search results to facilitate model acquisition and/or collaboration. The PDX Finder resource currently contains information for 1985 PDX models of diverse cancers including those from large resources such as the Patient-Derived Models Repository, PDXNet and EurOPDX. Individuals or organizations that generate and distribute PDXs are invited to increase the \u27findability\u27 of their models by participating in the PDX Finder initiative at www.pdxfinder.org

    PDCM Finder: an open global research platform for patient-derived cancer models.

    Get PDF
    PDCM Finder (www.cancermodels.org) is a cancer research platform that aggregates clinical, genomic and functional data from patient-derived xenografts, organoids and cell lines. It was launched in April 2022 as a successor of the PDX Finder portal, which focused solely on patient-derived xenograft models. Currently the portal has over 6200 models across 13 cancer types, including rare paediatric models (17%) and models from minority ethnic backgrounds (33%), making it the largest free to consumer and open access resource of this kind. The PDCM Finder standardises, harmonises and integrates the complex and diverse data associated with PDCMs for the cancer community and displays over 90 million data points across a variety of data types (clinical metadata, molecular and treatment-based). PDCM data is FAIR and underpins the generation and testing of new hypotheses in cancer mechanisms and personalised medicine development

    The role of interpersonal personality traits and reassurance seeking in eating disorder symptoms and depressive symptoms among women with bulimia nervosa

    Get PDF
    The role of interpersonal factors has been proposed in various models of eating disorder (ED) psychopathology and treatment. We examined the independent and interactive contributions of two interpersonal-focused personality traits (i.e., social avoidance and insecure attachment) and reassurance seeking in relation to global ED psychopathology and depressive symptoms among women with bulimia nervosa (BN)

    Intrinsic calf factors associated with the behavior of healthy pre-weaned group-housed dairy-bred calves

    Get PDF
    Technology-derived behaviors are researched for disease detection in artificially-reared calves. Whilst existing studies demonstrate differences in behaviors between healthy and diseased calves, intrinsic calf factors (e.g., sex and birthweight) that may affect these behaviors have received little systematic study. This study aimed to understand the impact of a range of calf factors on milk feeding and activity variables of dairy-bred calves. Calves were group-housed from ~7 days to 39 days of age. Seven liters of milk replacer was available daily from an automatic milk feeder, which recorded feeding behaviors and live-weight. Calves were health scored daily and a tri-axial accelerometer used to record activity variables. Healthy calves were selected by excluding data collected 3 days either side of a poor health score or a treatment event. Thirty-one calves with 10 days each were analyzed. Mixed models were used to identify which of live-weight, age, sex, season of birth, age of inclusion into the group, dam parity, birthweight, and sire breed type (beef or dairy), had a significant influence on milk feeding and activity variables. Heavier calves visited the milk machine more frequently for shorter visits, drank faster and were more likely to drink their daily milk allowance than lighter calves. Older calves had a shorter mean standing bout length and were less active than younger calves. Calves born in summer had a longer daily lying time, performed more lying and standing bouts/day and had shorter mean standing bouts than those born in autumn or winter. Male calves had a longer mean lying bout length, drank more slowly and were less likely to consume their daily milk allowance than their female counterparts. Calves that were born heavier had fewer lying and standing bouts each day, a longer mean standing bout length and drank less milk per visit. Beef-sired calves had a longer mean lying bout length and drank more slowly than their dairy sired counterparts. Intrinsic calf factors influence different healthy calf behaviors in different ways. These factors must be considered in the design of research studies and the field application of behavior-based disease detection tools in artificially reared calves
    • …
    corecore