193 research outputs found

    Using Grip Strength as a Cardiovascular Risk Indicator Based on Hybrid Algorithms

    Get PDF
    This article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the cardiovascular health of patients. The data were taken in a systematic way, k-means and c-means algorithms were used for the classification of the data, for the prediction of new data two vectorial support machines were used, one for the k-means and the other for the c-means, obtaining as a result a 100% of precision in the vectorial support machine with c-means and a 92% in the one of k-means

    Historical biogeography of the neotropical Diaptomidae (Crustacea:Copepoda)

    Get PDF
    Introduction: Diaptomid copepods are prevalent throughout continental waters of the Neotropics, yet little is\ud known about their biogeography. In this study we investigate the main biogeographical patterns among the\ud neotropical freshwater diaptomid copepods using Parsimony Analysis of Endemicity (PAE) based on species records\ud within ecoregions. In addition, we assess potential environmental correlates and limits for species richness.\ud Results: PAE was efficient in identifying general areas of endemism. Moreover, only ecoregion area showed a\ud significant correlation with diaptomid species richness, although climatic factors were shown to provide possible\ud upper limits to the species richness in a given ecoregion.\ud Conclusion: The main patterns of endemism in neotropical freshwater diaptomid copepods are highly congruent\ud with other freshwater taxa, suggesting a strong historical signal in determining the distribution of the family in the\ud Neotropics.We would like to thank to Professor Edinaldo Nelson dos Santos Silva (INPA, Brazil) for useful insight during this study. We also thank FAPESP (process 2008/02015-7, 2009/00014-6, 2011/18358-3) for financial support to GPN; and CNPq for financial support to DP (process 141702/2006-0) and MRP (process 304897/2012-4)

    Comparative cytogenetics of spiny rats of the genus proechimys (Rodentia, Echimyidae) from the Amazon region

    Get PDF
    We made a comparative analysis of the cytogenetics of spiny rat species of the genus Proechimys collected from several sites of the Madeira River basin (Amazonas State, Brazil) and Jari River valley (Pará State, Brazil). Individuals were assigned to three groups based on diploid and fundamental numbers: 2n=28, FN=46 (P. cuvieri and P. gr. longicaudatus); 2n=38, FN=52 (Proechimys gr. guyannensis), and 2n=40, FN=54 (P. gardneri). The nucleolar organizer region (NOR) was interstitial on the long arm of one submetacentric pair, as seen in all species of Proechimys analyzed thus far. However, its position in the karyotype was variable. A duplication of the NOR in one of the homologues was detected in P. gr. longicaudatus from the Aripuanã basin along the mid Madeira. The C-band pattern varied between species and, together with the NOR, allowed the identification of two evolutionary units in P. gr. longicaudatus in the region of the mid Madeira River (cytotypes A and B). The morphology and banding of the sex chromosomes were species specific. A range extension is suggested for the geographic distribution of P. gardneri and P. gr. longicaudatus. Moreover, we suggest that species of Proechimys with 2n=38 chromosomes are restricted to east of the Negro River and north of the Amazon River. We also revised the published chromosome data available for Proechimys. © FUNPEC-RP

    Modelling [18F]LW223 PET data using simplified imaging protocols for quantification of TSPO expression in the rat heart and brain

    Get PDF
    PURPOSE: To provide a comprehensive assessment of the novel 18 kDa translocator protein (TSPO) radiotracer, [(18)F]LW223, kinetics in the heart and brain when using a simplified imaging approach. METHODS: Naive adult rats and rats with surgically induced permanent coronary artery ligation received a bolus intravenous injection of [(18)F]LW223 followed by 120 min PET scanning with arterial blood sampling throughout. Kinetic modelling of PET data was applied to estimated rate constants, total volume of distribution (V(T)) and binding potential transfer corrected (BP(TC)) using arterial or image-derived input function (IDIF). Quantitative bias of simplified protocols using IDIF versus arterial input function (AIF) and stability of kinetic parameters for PET imaging data of different length (40–120 min) were estimated. RESULTS: PET outcome measures estimated using IDIF significantly correlated with those derived with invasive AIF, albeit with an inherent systematic bias. Truncation of the dynamic PET scan duration to less than 100 min reduced the stability of the kinetic modelling outputs. Quantification of [(18)F]LW223 uptake kinetics in the brain and heart required the use of different outcome measures, with BP(TC) more stable in the heart and V(T) more stable in the brain. CONCLUSION: Modelling of [(18)F]LW223 PET showed the use of simplified IDIF is acceptable in the rat and the minimum scan duration for quantification of TSPO expression in rats using kinetic modelling with this radiotracer is 100 min. Carefully assessing kinetic outcome measures when conducting a systems level as oppose to single-organ centric analyses is crucial. This should be taken into account when assessing the emerging role of the TSPO heart-brain axis in the field of PET imaging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-021-05482-1

    Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma

    Get PDF
    In Burkitt lymphoma/leukemia (BL), achievement of complete remission with first-line chemotherapy remains a challenging issue, as most patients who respond remain disease-free, whereas those refractory have few options of being rescued with salvage therapies. The mechanisms underlying BL chemoresistance and how it can be circumvented remain undetermined. We previously reported the frequent inactivation of the proapoptotic BIM gene in B-cell lymphomas. Here we show that BIM epigenetic silencing by concurrent promoter hypermethylation and deacetylation occurs frequently in primary BL samples and BL-derived cell lines. Remarkably, patients with BL with hypermethylated BIM presented lower complete remission rate (24% vs 79%; P = .002) and shorter overall survival (P = .007) than those with BIM-expressing lymphomas, indicating that BIM transcriptional repression may mediate tumor chemoresistance. Accordingly, by combining in vitro and in vivo studies of human BL-xenografts grown in immunodeficient RAG2(-/-)γc(-/-) mice and of murine B220(+)IgM(+) B-cell lymphomas generated in Eμ-MYC and Eμ-MYC-BIM(+/-) transgenes, we demonstrate that lymphoma chemoresistance is dictated by BIM gene dosage and is reversible on BIM reactivation by genetic manipulation or after treatment with histone-deacetylase inhibitors. We suggest that the combination of histone-deacetylase inhibitors and high-dose chemotherapy may overcome chemoresistance, achieve durable remission, and improve survival of patients with BL
    corecore