13,966 research outputs found
Spin inversion devices with Fano anti-resonances
Analyzing spin transport of quasi-2D electrons gas moving through a
semiconductor wave guide subject to a sectionally homogeneous tilted magnetic
field, we found well-defined selection rules for resonant and antiresonant spin
carrier transmission. Based on these selection rules and the band shift induced
by the magnetic field strength and the tilting angles, we propose an efficient
spin inversion device. For a polarized incoming electron beam, we can determine
from our theoretical approach, physical conditions for spin-inversion
efficiency up to 80%. We visualize this mechanism in terms of conductance and
the spacial behavior of the wave function amplitude along the superlattice.Comment: 3 pages, 3 figures, regular pape
The lattice gluon propagator in renormalizable gauges
We study the SU(3) gluon propagator in renormalizable gauges
implemented on a symmetric lattice with a total volume of (3.25 fm) for
values of the guage fixing parameter up to . As expected, the
longitudinal gluon dressing function stays constant at its tree-level value
. Similar to the Landau gauge, the transverse gauge gluon
propagator saturates at a non-vanishing value in the deep infrared for all
values of studied. We compare with very recent continuum studies and
perform a simple analysis of the found saturation with a dynamically generated
effective gluon mass.Comment: 6 pages, 4 figure
Cooperative Spectrum Sensing Using Random Matrix Theory
In this paper, using tools from asymptotic random matrix theory, a new
cooperative scheme for frequency band sensing is introduced for both AWGN and
fading channels. Unlike previous works in the field, the new scheme does not
require the knowledge of the noise statistics or its variance and is related to
the behavior of the largest and smallest eigenvalue of random matrices.
Remarkably, simulations show that the asymptotic claims hold even for a small
number of observations (which makes it convenient for time-varying topologies),
outperforming classical energy detection techniques.Comment: Submitted to International Symposium on Wireless Pervasive Computing
200
Probing the infrared quark mass from highly excited baryons
We argue that three-quark excited states naturally group into quartets, split
into two parity doublets, and that the mass splittings between these parity
partners decrease higher up in the baryon spectrum. This decreasing mass
difference can be used to probe the running quark mass in the mid-infrared
power-law regime. A measurement of masses of high-partial wave Delta*
resonances should be sufficient to unambiguously establish the approximate
degeneracy. We test this concept with the first computation of excited high-j
baryon masses in a chirally invariant quark model.Comment: 4 pages, 4 figures. submitted to Phys Rev Letter
Using highly excited baryons to catch the quark mass
Chiral symmetry in QCD can be simultaneously in Wigner and Goldstone modes,
depending on the part of the spectrum examined. The transition regime between
both, exploiting for example the onset of parity doubling in the high baryon
spectrum, can be used to probe the running quark mass in the mid-IR power-law
regime. In passing we also argue that three-quark states naturally group into
same-flavor quartets, split into two parity doublets, all splittings decreasing
high in the spectrum. We propose that a measurement of masses of high-partial
wave Delta* resonances should be sufficient to unambiguously establish the
approximate degeneracy and see the quark mass running. We test these concepts
with the first computation of the spectrum of high-J excited baryons in a
chiral-invariant quark model.Comment: 6 pages, 9 figures, To appear in the proceedings of the 19th
International IUPAP Conference on Few-Body Problems in Physics; added
acknowledgment, hyphenized author nam
Gravitational Larmor formula in higher dimensions
The Larmor formula for scalar and gravitational radiation from a pointlike
particle is derived in any even higher-dimensional flat spacetime. General
expressions for the field in the wave zone and the energy flux are obtained in
closed form. The explicit results in four and six dimensions are used to
illustrate the effect of extra dimensions on linear and uniform circular
motion. Prospects for detection of bulk gravitational radiation are briefly
discussed.Comment: 5 pages, no figure
The role of outer membrane protein(S) harboring slh/oprb-domains in extracellular vesicles’ production in synechocystis sp. pcc 6803
Cyanobacteria are a group of photosynthetic prokaryotes that contribute to primary production on a global scale. These microorganisms release vesicles to the extracellular environment, spherical nanosized structures, derived essentially from the outer membrane. Even though earlier works in model Gram-negative bacteria have hypothesized that outer membrane stability is crucial in vesicle formation, the mechanisms determining vesicle biogenesis in cyanobacteria remain unknown. Here, we report on the identification of six candidate genes encoding outer membrane proteins harboring SLH/OprB-domains in the genome of the model cyanobacterium Synechocystis sp. PCC 6803. Using a genetics-based approach, one gene was found to encode an essential protein (Slr1841), while the remaining five are not essential for growth under standard conditions. Vesicle production was monitored, and it was found that a mutant in the gene encoding the second most abundant SLH/OprB protein in Synechocystis sp. PCC 6803 outer membrane (Slr1908) produces more vesicles than any of the other tested strains. Moreover, the Slr1908-protein was also found to be important for iron uptake. Altogether, our results suggest that proteins containing the SLH/OprB-domains may have dual biological role, related to micronutrient uptake and to outer membrane stability, which, together or alone, seem to be involved in cyanobacterial vesicle biogenesis.This work was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020 Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal, 2020, and by Portuguese funds through Fundação para a Ciência e a Tecnolo-gia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-029540 (PTDC/BIA-OUT/29540/2017). Fundação para a Ciência e a Tecnologia is also greatly acknowledged for the PhD fellowship SFRH/BD/130478/2017 (SL) and FCT Investigator grant IF/00256/2015 (PO)
Automatic speaker segmentation using multiple features and distance measures: a comparison of three approaches
This paper addresses the problem of unsupervised speaker change detection. Three systems based on the Bayesian Information Criterion (BIC) are tested. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic thresholding followed by a fusion scheme, and finally applies BIC. The second method is a real-time one that uses a metric-based approach employing the line spectral pairs and the BIC to validate a potential speaker change point. The third method consists of three modules. In the first module, a measure based on second-order statistics is used; in the second module, the Euclidean distance and T2 Hotelling statistic are applied; and in the third module, the BIC is utilized. The experiments are carried out on a dataset created by concatenating speakers from the TIMIT database, that is referred to as the TIMIT data set. A comparison between the performance of the three systems is made based on t-statistics
- …