378 research outputs found

    Brillouin-Raman mapping of natural fibers with spectral moment analysis

    Get PDF
    This is the author accepted manuscript. The final version is available from the Optical Society of America via the DOI in this record.Brillouin spectroscopy has emerged as a novel analytical tool for biophotonic research and applications. It operates on a microscopic scale and in the GHz spectral range, providing a new spatial and frequency window for the analysis of the structure and elasticity of materials. Here we investigate spectral moments calculation as a means of analysing Brillouin and Raman spectra, providing rapid access to peak intensity and frequency shift, with robust application to fast scanning measurements. This work demonstrates the potential of the method, especially in the case of micro-structured samples, typical of bio-medical applications.COST (European Cooperation in Science and Technology

    Ética em Pesquisa: antigos conhecidos, novos desafios

    Full text link

    Ergodicity breaking in strong and network-forming glassy system

    Full text link
    The temperature dependence of the non-ergodicity factor of vitreous GeO2_2, fq(T)f_{q}(T), as deduced from elastic and quasi-elastic neutron scattering experiments, is analyzed. The data are collected in a wide range of temperatures from the glassy phase, up to the glass transition temperature, and well above into the undercooled liquid state. Notwithstanding the investigated system is classified as prototype of strong glass, it is found that the temperature- and the qq-behavior of fq(T)f_{q}(T) follow some of the predictions of Mode Coupling Theory. The experimental data support the hypothesis of the existence of an ergodic to non-ergodic transition occurring also in network forming glassy systems

    Evidence of anomalous dispersion of the generalized sound velocity in glasses

    Full text link
    The dynamic structure factor, S(Q,w), of vitreous silica, has been measured by inelastic X-ray scattering in the exchanged wavevector (Q) region Q=4-16.5 nm-1 and up to energies hw=115 meV in the Stokes side. The unprecedented statistical accuracy in such an extended energy range allows to accurately determine the longitudinal current spectra, and the energies of the vibrational excitations. The simultaneous observation of two excitations in the acoustic region, and the persistence of propagating sound waves up to Q values comparable with the (pseudo-)Brillouin zone edge, allow to observe a positive dispersion in the generalized sound velocity that, around Q=5 nm-1, varies from 6500 to 9000 m/s: this phenomenon was never experimentally observed in a glass.Comment: 5 pages, 3 figures. To appear in Phys. Rev.

    Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    Get PDF
    This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10:6 (mass fraction of particles of aerodynamic diameter lower than 10.6 \u3bcm) and PM2:5 (mass fraction of particles of aerodynamic diameter lower than 2.5 \u3bcm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10:6 mass fraction (range 37\u2013135x10-3 m2 g-1 at 375 nm) than for the PM2:5 (range 95\u2013711x10-3 m2 g-1 at 375 nm) and decrease with increasing wavelength as lambda-AAE, where the \uc5ngstr\uf6m absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the oxide fraction, which could ease the application and the validation of climate models that now start to include the representation of the dust composition, as well as for remote sensing of dust absorption in the UV\u2013vis spectral region
    corecore