827 research outputs found
Longitudinal Structure Functions in Decaying and Forced Turbulence
In order to reliably compute the longitudinal structure functions in decaying
and forced turbulence, local isotropy is examined with the aid of the isotropic
expression of the incompressible conditions for the second and third order
structure functions. Furthermore, the Karman-Howarth-Kolmogorov relation is
investigated to examine the effects of external forcing and temporally
decreasing of the second order structure function. On the basis of these
investigations, the scaling range and exponents of the longitudinal
structure functions are determined for decaying and forced turbulence with the
aid of the extended-self-similarity (ESS) method. We find that 's are
smaller, for , in decaying turbulence than in forced turbulence. The
reasons for this discrepancy are discussed. Analysis of the local slopes of the
structure functions is used to justify the ESS method.Comment: 15 pages, 16 figure
Statistics of Dissipation and Enstrophy Induced by a Set of Burgers Vortices
Dissipation and enstropy statistics are calculated for an ensemble of
modified Burgers vortices in equilibrium under uniform straining. Different
best-fit, finite-range scaling exponents are found for locally-averaged
dissipation and enstrophy, in agreement with existing numerical simulations and
experiments. However, the ratios of dissipation and enstropy moments supported
by axisymmetric vortices of any profile are finite. Therefore the asymptotic
scaling exponents for dissipation and enstrophy induced by such vortices are
equal in the limit of infinite Reynolds number.Comment: Revtex (4 pages) with 4 postscript figures included via psfi
Vortex tubes in velocity fields of laboratory isotropic turbulence: dependence on the Reynolds number
The streamwise and transverse velocities are measured simultaneously in
isotropic grid turbulence at relatively high Reynolds numbers, Re(lambda) =
110-330. Using a conditional averaging technique, we extract typical
intermittency patterns, which are consistent with velocity profiles of a model
for a vortex tube, i.e., Burgers vortex. The radii of the vortex tubes are
several of the Kolmogorov length regardless of the Reynolds number. Using the
distribution of an interval between successive enhancements of a small-scale
velocity increment, we study the spatial distribution of vortex tubes. The
vortex tubes tend to cluster together. This tendency is increasingly
significant with the Reynolds number. Using statistics of velocity increments,
we also study the energetical importance of vortex tubes as a function of the
scale. The vortex tubes are important over the background flow at small scales
especially below the Taylor microscale. At a fixed scale, the importance is
increasingly significant with the Reynolds number.Comment: 8 pages, 3 PS files for 8 figures, to appear in Physical Review
Probability density function of turbulent velocity fluctuation
The probability density function (PDF) of velocity fluctuations is studied
experimentally for grid turbulence in a systematical manner. At small distances
from the grid, where the turbulence is still developing, the PDF is
sub-Gaussian. At intermediate distances, where the turbulence is fully
developed, the PDF is Gaussian. At large distances, where the turbulence has
decayed, the PDF is hyper-Gaussian. The Fourier transforms of the velocity
fluctuations always have Gaussian PDFs. At intermediate distances from the
grid, the Fourier transforms are statistically independent of each other. This
is the necessary and sufficient condition for Gaussianity of the velocity
fluctuations. At small and large distances, the Fourier transforms are
dependent.Comment: 7 pages, 8 figures in a PS file, to appear in Physical Review
Periodically kicked turbulence
Periodically kicked turbulence is theoretically analyzed within a mean field
theory. For large enough kicking strength A and kicking frequency f the
Reynolds number grows exponentially and then runs into some saturation. The
saturation level can be calculated analytically; different regimes can be
observed. For large enough Re we find the saturation level to be proportional
to A*f, but intermittency can modify this scaling law. We suggest an
experimental realization of periodically kicked turbulence to study the
different regimes we theoretically predict and thus to better understand the
effect of forcing on fully developed turbulence.Comment: 4 pages, 3 figures. Phys. Rev. E., in pres
Supersonic turbulence and structure of interstellar molecular clouds
The interstellar medium (ISM) provides a unique laboratory for highly
supersonic, driven hydrodynamics turbulence. We present a theory of such
turbulence, confirm it by numerical simulations, and use the results to explain
observational properties of interstellar molecular clouds, the regions where
stars are born.Comment: 5 pages, 3 figures include
Intermittency and structure functions in channel flow turbulence
We present a study of intermittency in a turbulent channel flow. Scaling
exponents of longitudinal streamwise structure functions, ,
are used as quantitative indicators of intermittency.
We find that, near the center of the channel the values of
up to are consistent with the assumption of homogeneous/isotropic
turbulence. Moving towards the boundaries, we observe a growth of intermittency
which appears to be related to an intensified presence of ordered vortical
structures. In fact, the behaviour along the normal-to-wall direction of
suitably normalized scaling exponents shows a remarkable correlation with the
local strength of the Reynolds stress and with the \rms value of helicity
density fluctuations. We argue that the clear transition in the nature of
intermittency appearing in the region close to the wall, is related to a new
length scale which becomes the relevant one for scaling in high shear flows.Comment: 4 pages, 6 eps figure
A model of discriminant analysis on the basis of descriptor variables for the ampelography of Vitis sp.
Use of descriptor variables in ampelography is recommended to simplify recording of data and to enable useful comparisons. Parametric assumptions are, however, poorly satisfied especially with regard to statistical interference. In the paper some statistical procedures to improve the discriminant ability of descriptor variables are considered. The use of variances and covariances of variety by year interactions is suggested for the error matrix within a multiple discriminant analysis procedure. The adequacy of this model is verified in a 3-year experiment with Italian wine varieties. The discriminant power, as evaluated on the basis of the estimated distances among varieties, is satisfactory
Effects of mesenchymal stromal cell-derived extracellular vesicles on tumor growth
Extracellular vesicles (EVs) are membrane vesicles, which are secreted by a variety of cells that have a relevant role in intercellular communication. EVs derived from various cell types exert different effects on target cells. Mesenchymal stromal cells (MSCs) are stem cells that are ubiquitously present in different tissues of the human body, and MSC-derived EVs take part in a wide range of biological processes. Of particular relevance is the effect of MSCs on tumor growth and progression. MSCs have opposing effects on tumor growth, being able either to favor angiogenesis and tumor initiation, or to inhibit progression of established tumors, according to the conditions. Different studies have reported that EVs from MSCs may exert either an anti- or a pro-tumor growth effect depending on tumor type and stage of development. In this review, we will discuss the data presented in the literature on EV-mediated interactions between MSCs and tumors
Association between recurrence of acute kidney injury and mortality in intensive care unit patients with severe sepsis
Background: Acute kidney injury (AKI) occurs in more than half critically ill patients admitted in intensive care units (ICU) and increases the mortality risk. The main cause of AKI in ICU is sepsis. AKI severity and other related variables such as recurrence of AKI episodes may influence mortality risk. While AKI recurrence after hospital discharge has been recently related to an increased risk of mortality, little is known about the rate and consequences of AKI recurrence during the ICU stay. Our hypothesis is that AKI recurrence during ICU stay in septic patients may be associated to a higher mortality risk. Methods: We prospectively enrolled all (405) adult patients admitted to the ICU of our hospital with the diagnosis of severe sepsis/septic shock for a period of 30 months. Serum creatinine was measured daily. ?In-ICU AKI recurrence? was defined as a new spontaneous rise of ?0.3 mg/dl within 48 h from the lowest serum creatinine after the previous AKI episode. Results: Excluding 5 patients who suffered the AKI after the initial admission to ICU, 331 patients out of the 400 patients (82.8%) developed at least one AKI while they remained in the ICU. Among them, 79 (19.8%) developed ?2 AKI episodes. Excluding 69 patients without AKI, in-hospital (adjusted HR = 2.48, 95% CI 1.47?4.19), 90-day (adjusted HR = 2.54, 95% CI 1.55?4.16) and end of follow-up (adjusted HR = 1.97, 95% CI 1.36?2.84) mortality rates were significantly higher in patients with recurrent AKI, independently of sex, age, mechanical ventilation necessity, APACHE score, baseline estimated glomerular filtration rate, complete recovery and KDIGO stage. Conclusions: AKI recurred in about 20% of ICU patients after a first episode of sepsis-related AKI. This recurrence increases the mortality rate independently of sepsis severity and of the KDIGO stage of the initial AKI episode. ICU physicians must be aware of the risks related to AKI recurrence while multiple episodes of AKI should be highlighted in electronic medical records and included in the variables of clinical risk scores
- …
