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Periodically kicked turbulence
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Periodically kicked turbulence is theoretically analyzed within a mean-field theory. For large enough kicking
strengthA and kicking frequencyf the Reynolds number grows exponentially and then runs into some satu-
ration. The saturation level Resat can be calculated analytically; different regimes can be observed. For large
enough Re we find Resat}A f , but intermittency can modify this scaling law. We suggest an experimental
realization of periodically kicked turbulence to study the different regimes we theoretically predict and thus to
better understand the effect of forcing on fully developed turbulence.
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Periodically driven flow is ubiquitous. Faraday’s expe
ment @1# is an idealized version thereof; more relevant e
amples are the earth’s atmosphere, driven by periodical h
ing of the sun, or the blood flow in veins, driven by th
beating heart. Another example is the gas flow inside
sonoluminescing bubble that is periodically kicked by t
collapsing bubble wall@2#. Another example of periodically
kicked turbulence is the numerical realization of homog
neous shear flow@3# where periodical remeshing is nece
sary.

In this paper we set up a mean-field theory for perio
cally kicked flow, based on the mean-field theory for dec
ing turbulence@4#, which was able to describe the expe
mentally measured energy decay in turbulent liquid-heli
flow with fixed external length scale@5#. The goal of this
paper is to theoretically understand the different flow
gimes, which are to be expected, to explore the effect
intermittency corrections on these regimes, and to ultima
initiate experiments.

Another motivation for the paper is to study the effect
a specified type of forcing on turbulence. In most theoreti
studies on turbulence, a Gaussian random noise, actin
the largest length scales, is assumed. Only recently exp
mentalists started to systematically vary the type of forc
@6,7#. This paper is a further step towards the analysis o
more specific type of forcing.

To define the model, we have to~i! calculate the energy
input during the kick and~ii ! know how the energy is dissi
pated in the timeDt between successive kicks.

~i! Kick: As an illustration, consider plane shear flow
the 1 direction; the flow is sheared in the 3 direction. T
width of the channel isL, the velocity of the upper plate isU,
the lower one is at rest. The average energy dissipation
can be calculated to be~see, e.g., Ref.@8#!

e52
U

L
~^u3u1&A2n]3^u1&A!, ~1!

where^&A denotes the average over thex-y plane andn is
the viscosity. For laminar flow the first term in the bracket
zero and the second one is2nU/L. In turbulent flow in the
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middle of the channel the second term on the right-hand s
will hardly contribute for large enough Reynolds numbe
The first term represents the total turbulent flow energyE,
order of magnitude wise. Therefore, in general,

Ė~ t !52e~ t !;
U

L
E~ t !1

U2

L2 n. ~2!

Imagine now a short intense kick of timeDtkick!Dt on the
flow by rapidly moving the upper plate withU. After this
kick the initial energyE0 increases according to Eq.~2!,

E15E01S E01
Un

L D U

L
Dtkick , ~3!

where we have assumedDtkick!L/U. Assume isotropic tur-
bulence in the flow center and define a Reynolds numbe1

Re~ t !5
Lu1,rms~ t !

n
5A2

3

LAE~ t !

n
. ~4!

Then Eq.~3! translates to

Re15Re0A112A1
Relam

2

Re0
2

~5!

with the dimensionless kicking strengthA5 1
2 DtkickU/L!1

and the ‘‘laminar’’ Reynolds number Relam5 2
3 DtkickU

2/n.
We choose this name because for very small Re0 we have
Re15Relam . For very large Re0@Relam we have Re15(1
1A)Re0. Shear flow and the ‘‘derivation’’ of Eq.~5! are
only thought of as a motivation; there will be many oth
experimental situations where the energy input roughly c
responds to a law of type~5!.

~ii ! Decay: In Ref.@4# we calculated how the turbulen
activity decays within a timet for flow with fixed external
length scaleL. The calculation was based on Effinger a
Grossmann’s variable range mean-field theory of turbule
@9# in which viscous subrange and inertial subrange can

1Note that this is not the standard definition and gives lower v
ues for the laminar-turbulent transition than what one is used to
4946 ©2000 The American Physical Society
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treated equally well. The result of Ref.@4# is that for given
initial Reynolds number Rei , the time dependence of Re(t)
@defined as in Eq.~4!# is determined by the inverse functio
of

t~Re!

t
5

3

ce,`
@F~Re!2F~Rei !#, ~6!

wheret5L2/n andF(Re) is given by

F~Re!5
1

2 Re2
$2g1Ag21Re2%1

1

2g
logH g1Ag21Re2

Re J .

~7!

ce,`5(6/b)3/2 ~in this theory! is the dimensionless energ
dissipation in the large Reynolds number limit,g59/ce,` ,
and b is the Kolmogorov constant@10#, which is the only
free parameter in the theory of Ref.@4#. From experiment
@11# b56.0, a value that we take in all calculations he
Consequently,ce,`51.0 andg59.0. Rather than the Rey
nolds number@Eq. ~4!# one could also give the Taylor
Reynolds number Rel @4#,

Rel5A 15 Re2

ce,`~g1Ag21Re2!
. ~8!

Equations~5!–~7! with t5Dt ~the time between succes
sive kicks! fully define the present model. The two ma
physical parameters in the model are the kicking strengtA
and the kicking frequencyf 51/Dt. The third physical pa-
rameter is Relam , the minimal Reynolds number after a kic
We pick Relam51 throughout.

Figure 1 shows Re(t) for fixed A and three different kick-
ing frequenciesf for the initial Reynolds number Re0
5Relam51. During each cycle there is a kick Re0→Re1
according to Eq.~5! and a subsequent decay according to E
~6!. Overall, there is growth up to some saturation le
Resat(A, f ), achieved aftertsat(A, f ). In this saturation state

FIG. 1. Time series Re(t) for fixed A50.1 and three kicking
frequenciesf 510/t, f 5100/t, and f 5500/t, bottom to top. The
corresponding ~upper! saturation levels are Reu

sat51.3, Reu
sat

517.3, and Reu
sat5136, respectively.
.

.
l

energy input and loss through decay inDt balance, and the
degree of excitation fluctuates between a lower satura
level Rel

sat and an upper saturation level

Reu
sat5Rel

satA112A1~Relam /Rel
sat!2. ~9!

The ~lower! level of saturation Rel
sat(A, f ) is given through

the implicit equation

1

t f
5

3

ce,`
FF~Rel

sat!2FS Rel
satA112A1S Relam

Rel
satD 2D G .

~10!

For large Reu
sat , Rel

sat@g one has the explicit result

FIG. 2. Saturation level Rel
sat ~lower curve of pair! and Reu

sat

~upper curve of pair! as a function off for three different kicking
strengthsA50.01 ~solid!, A50.1 ~dashed!, and A50.5 ~dashed-
dotted!, bottom to top. Below Reu

sat;g59.0 the excited state is
laminar, above Reu

sat;9 it is turbulent.

FIG. 3. Reu
sat and Rel

sat for f 510, 102, 103, 104, bottom to
top. The increasing difference between Reu

sat and Rel
sat at the right

edge of the figure, has its origin in the breakdown of the requ
mentA!1.
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Reu
sat5

3t f

ce,`
~A112A21!'

3t

ce,`
A f . ~11!

In Fig. 2 we show a log-log plot of Rel ,u
sat as a function off

for different kicking strengthA. Two regimes are seen:~i!
For small Rel ,u

sat&g a laminar regime in which after the deca
the kick always brings back the level of excitation to t
laminar value Relam51. ~ii ! For large Rel ,u

sat*g we have a
turbulent scaling regime with Reu

sat} f . The transition from
the laminar to the turbulence regime takes place around

f trans5
3

tA
. ~12!

Similarily, these two regimes are also seen in Fig. 3 wh
we plotted Rel ,u

sat vs A. In the turbulent regime for large
Rel ,u

sat , it is Rel ,u
sat}A.

We now come to the important question of how interm
tency effects@12# change the exponents calculated with
this mean-field theory. In Ref.@13# intermittency effects
have been included into the mean-field theory of Ref.@4# on
a phenomenological basis. One possibility for their effec
that the dimensionless energy dissipation ratece becomes
slightly Reynolds number dependent even in the large R
nolds number limit@13#, ce}Re2k, with k5(9/8)dz2 /(1
13dz2/8). Here,dz2'0.03 is the experimentally found de
viation from the classical scaling exponentz252/3 of the
second-order velocity structure function. The consequen
of this small (k'0.03) scaling correction can straightfo
wardly be embodied in the present mean-field approach
periodically kicked turbulence. The result is that in the tu
bulent regime the saturation level now obeys

Rel ,u
sat}~A f !1/(12k) ~13!

rather than Eq.~11!. Equation ~13! may offer a new and
independent way to experimentally determine intermitten
exponents.

Another effect related to intermittency is the followin
We expect the total energy to build up again and again o
time scales larger thanDt and then to suddenly drop becau
an energy pulse is traveling downscale. Such behavior
been observed in numerical simulations of periodically
meshed homogeneous shear flow@3# and in simulations of
periodically kicked shell models of turbulence@results to be
published#. As based on a mean-field theory the model
this paper is only applicable to the mean energy and no
these fluctuations.

We now come back to an experimental realization. It w
be easier to perform experiments in a closed system ra
ys
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than in a channel flow. A particular suited experimen
setup for periodically kicked turbulence would be the flow
a cylinder between two counter-rotating disks@6,14#. Also,
Rayleigh-Benard convection may be well suited. Here, as
example, we take Taylor-Couette flow@15#: If the radii of the
inner and outer cylinder are similar, the energy input w
still roughly follow Eq. ~5!. Take water as a fluid that ha
n51026 m2/s and takeL51 cm, thent5100 s. Realisti-
cally achievable kick strengths would beA5DtkickU/(2L)
;(0.1 s)(0.1 m/s)/(231 cm)50.5, e.g., the whole range
A,1 in which the theory is applicable. For this value th
scaling regime sets in atf trans50.06 Hz. Roughly two de-
cades of scaling are necessary to explore intermittency
rections and to distinguish between Eqs.~11! and~13!. That
is, one has to go up to frequencies of around 6 Hz, wh
should be achievable. At these relatively large kicking f
quencies, measurements can only revealinstantaneousval-
ues. To get statements on the averaged quantities dealt
in this paper, ensemble averaging is necessary. This is
done by repeatedly probing the flow at some fixed ph
after the respective kick. Averaging over the results at ph
01 will give Reu

sat , and averaging over the results at pha
Dt2 will give Rel

sat , etc.
We suggest to perform a periodically kicked turbulen

experiment and to measure Resat as a function of bothA and
f. To our knowledge, it would be one of the first ones w
some active control on the type of forcing. Immediate qu
tions to ask are: Does the level of saturation for large
indeed only depend on the productA f as suggested by Eqs
~11! and ~13! or do boundary effects carry on into th
strongly turbulent central regime and cause a more su
relation? If so, an application of the so commonly used v
ume forcing for turbulence becomes more questionable.
the ~scaling! relations between the quantities introduced
this paper, e.g., Rel ,u

sat( f ,A) offer a new way to measure in
termittency effects? What modifications arise if forcing a
decay do not decouple as assumed in this simple model
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Hiller, R. Löfstedt, S. J. Putterman, and K. R. Weninger, Ph
Rep.281, 65 ~1997!.

@3# A. Pumir, Phys. Fluids8, 3112~1996!.
@4# D. Lohse, Phys. Rev. Lett.73, 3223~1994!.
@5# M. Smith, R. J. Donelly, N. Goldenfeld, and W. F. Vine
.

Phys. Rev. Lett.71, 2583~1993!.
@6# R. Labbe, J. F. Pinton, and S. Fauve, J. Phys. II6, 1099~1996!.
@7# R. Camussi, S. Ciliberto, and C. Baudet, Phys. Rev. E56, 6181

~1997!.
@8# Th. Gebhardt, S. Grossmann, M. Holthaus, and M. Lo¨hden,

Phys. Rev. E51, 360 ~1995!.
@9# H. Effinger and S. Grossmann, Z. Phys. B: Condens. Ma



-

s.

ch.

PRE 62 4949PERIODICALLY KICKED TURBULENCE
66, 289 ~1987!.
@10# A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics

~MIT Press, Cambridge, MA, 1975!.
@11# K. R. Sreenivasan, Phys. Fluids7, 2778~1995!.
@12# U. Frisch, Turbulence ~Cambridge University Press, Cam

bridge, 1995!.
@13# S. Grossmann, Phys. Rev. E51, 6275 ~1995!; G. Stolovitzky
and K. R. Sreenivasan,ibid. 52, 3242~1995!.
@14# G. Zocchi, P. Tabeling, J. Maurer, and H. Willaime, Phy

Rev. E50, 3693~1994!; for a review on this type of turbulence
see P. J. Zandbergen and D. Dijkstra, Annu. Rev. Fluid Me
26, 137 ~1987!.

@15# G. S. Lewis and H. L. Swinney, Phys. Rev. E59, 5457~1999!.


