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Periodically kicked turbulence
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Periodically kicked turbulence is theoretically analyzed within a mean-field theory. For large enough kicking
strengthA and kicking frequency the Reynolds number grows exponentially and then runs into some satu-
ration. The saturation level R¥ can be calculated analytically; different regimes can be observed. For large
enough Re we find R&%Af, but intermittency can modify this scaling law. We suggest an experimental
realization of periodically kicked turbulence to study the different regimes we theoretically predict and thus to
better understand the effect of forcing on fully developed turbulence.

PACS numbds): 47.27—i

Periodically driven flow is ubiquitous. Faraday’s experi- middle of the channel the second term on the right-hand side
ment[1] is an idealized version thereof; more relevant ex-will hardly contribute for large enough Reynolds numbers.
amples are the earth’s atmosphere, driven by periodical heathe first term represents the total turbulent flow enefgy
ing of the sun, or the blood flow in veins, driven by the order of magnitude wise. Therefore, in general,
beating heart. Another example is the gas flow inside a
sonoluminescing bubble that is periodically kicked by the
collapsing bubble wal[2]. Another example of periodically
kicked turbulence is the numerical realization of homoge-
neous shear floW3] where periodical remeshing is neces- Imagine now a short intense kick of timt,;. <At on the
sary. flow by rapidly moving the upper plate withl. After this

In this paper we set up a mean-field theory for periodi-kick the initial energyE, increases according to E(R),
cally kicked flow, based on the mean-field theory for decay-
ing turbulence4], which was able to describe the experi-
mentally measured energy decay in turbulent liquid-helium
flow with fixed external length scalgs]. The goal of this
paper is to theoretically understand the different flow re-where we have assumeéd,;. <L/U. Assume isotropic tur-
gimes, which are to be expected, to explore the effect obulence in the flow center and define a Reynolds nufber
intermittency corrections on these regimes, and to ultimately
initiate experiments. LUg ms(t) \/§L JE(D)

Another motivation for the paper is to study the effect of Re(t)= " ~ N3 .
a specified type of forcing on turbulence. In most theoretical
studies on turbulence, a Gaussian random noise, acting orhen Eq.(3) translates to
the largest length scales, is assumed. Only recently experi-
mentalists started to systematically vary the type of forcing qu
[6,7]. This paper is a further step towards the analysis of a Re,=Re\/1+2A+ —an (5)
more specific type of forcing. Rl%

To define the model, we have (D calculate the energy _ ) o
input during the kick andii) know how the energy is dissi- With the dimensionless kicking strengf= 3 Aty;e U/L<1
pated in the time\t between successive kicks. and the “laminar” Reynolds number Rg=5At U/ v.

(i) Kick: As an illustration, consider plane shear flow in We choose this name because for very smalf e have
the 1 direction; the flow is sheared in the 3 direction. TheRe&1=R@a,m. For very large Rg>Rq., we have Re=(1
width of the channel i&, the velocity of the upper plate i3, ~ +A)R&. Shear flow and the “derivation” of Eq(5) are
the lower one is at rest. The average energy dissipation ra@nly thought of as a motivation; there will be many other
can be calculated to bsee, e.g., Ref8)]) experimental situations where the energy input roughly cor-

responds to a law of typéb).
U (i) Decay: In Ref.[4] we calculated how the turbulent
€= f(<U3U1>A— vdz(Us)a), ) activity decays within a time for flow with fixed external
length scalel. The calculation was based on Effinger and

where (), denotes the average over they plane andv is ~ Grossmann's variable range mean-field theory of turbulence
the viscosity. For laminar flow the first term in the bracket is[9] in which viscous subrange and inertial subrange can be

zero and the second one-svU/L. In turbulent flow in the

: U 2
E(t)z—e(t)’“EE(t)‘F FV. (2)

Urv\U
E]_:Eo"r EO+T EAtkick: (3)

4

14

INote that this is not the standard definition and gives lower val-
*Email address: lohse@tn.utwente.nl ues for the laminar-turbulent transition than what one is used to.
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t/t FIG. 2. Saturation level R&" (lower curve of pair and R

(upper curve of pajras a function off for three different kicking
strengthsA=0.01 (solid), A=0.1 (dashegi and A=0.5 (dashed-
dotted, bottom to top. Below R¥'~y=9.0 the excited state is
laminar, above I@‘va it is turbulent.

FIG. 1. Time series Re¢) for fixed A=0.1 and three kicking
frequenciesf=10/r, f=100/r, and f=500/r, bottom to top. The
corresponding (uppe) saturation levels are R¥=1.3, RE™
=17.3, and R¥'=136, respectively.

treated equally well. The result of Rd#] is that for given energy input apd .IOSS through decay/in balance, and the_
initial Reynolds number Re the time dependence of R degree of excitation fluctuates between a lower saturation

t .
[defined as in Eq(4)] is determined by the inverse function '€vel R§* and an upper saturation level
of

REX=Rg?"\1+ 2A+ (R m/RE™)2. 9
t(Re) 3 & G (R@am/RE™) C)
= —[F(Re—F(Re)], (6)
o The (lowen level of saturation RE'(A,f) is given through
wherer=L?%v andF(Re) is given by the implicit equation
1 1 y+ Yy +Re 2
FRO= gl 7 H VYR 5 log e e F(Refat)—F(Rqsat\/leZAﬁ— —qu::> H
(7 10
C...=(6/)%2 (in this theory is the dimensionless energy
dissipation in the large Reynolds number limjt=9/c...,  For large R&', Re®>y one has the explicit result

and b is the Kolmogorov constaritl0], which is the only
free parameter in the theory of Rd#]. From experiment
[11] b=6.0, a value that we take in all calculations here.
Consequentlyc, .=1.0 andy=9.0. Rather than the Rey-
nolds number[Eq. (4)] one could also give the Taylor-
Reynolds number Re[4],

- _\/ 15 Ré ©
&= ce,w(y+\/y2+Re2)'

Equations(5)—(7) with t=At (the time between succes-
sive kickg fully define the present model. The two main

physical parameters in the model are the kicking strergth
and the kicking frequency=1/At. The third physical pa-

rameter is Rg,, the minimal Reynolds number after a kick. -1 : :

We pick Rg,,=1 throughout. -3 -2 -1 0
Figure 1 shows Rej for fixed A and three different kick- |og10A

ing frequenciesf for the initial Reynolds number Re

=Re,n=1. During each cycle there is a kick ReRe FIG. 3. Ré* and R¢*' for =10, 1¢, 10°, 1¢%, bottom to

according to Eq(5) qnd a subsequent decay accordilng to Eqtop. The increasing difference betweeriRand R¢*" at the right
(6). Overall, there is growth up to some saturation leveledge of the figure, has its origin in the breakdown of the require-
Re*?(A,f), achieved aftetg,(A,f). In this saturation state, mentA<1.
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3r than in a channel flow. A particular suited experimental
Rg™= o _Af (11)  setup for periodically kicked turbulence would be the flow in
o a cylinder between two counter-rotating didiés14]. Also,
In Fig. 2 we show a log-log plot of ﬁgt as a function of  Rayleigh-Benard convection may be well suited. Here, as an
for different kicking strengthA. Two regimes are seeifi)  example, we take Taylor-Couette fl¢d5]: If the radii of the
For small R§3'< y a laminar regime in which after the decay inner and outer cylinder are similar, the energy input will
the kick always brings back the level of excitation to thestill roughly follow Eg. (5). Take water as a fluid that has
laminar value Rgy,=1. (i) For large R§i'=y we have a »=10"° m?/s and take.=1 cm, thenr=100 s. Realisti-
turbulent scaling regime with R&xf. The transition from cally achievable kick strengths would te= Aty U/(2L)
the laminar to the turbulence regime takes place around ~(0.1 s)(0.1 m/s)/(X1 cm)=0.5, e.g., the whole range
A<1 in which the theory is applicable. For this value the
ftrans:i- (12) scaling regim_e sets in dt,,,s=0.06 Hz. Rogghly MO de-
TA cades of scaling are necessary to explore intermittency cor-
rections and to distinguish between E¢EL) and(13). That
i §s, one has to go up to frequencies of around 6 Hz, which
e , gime for large ghoyig be achievable. At these relatively large kicking fre-
Ry, it is RE=A. quencies, measurements can only revestantaneousal-
We now come to the important question of how intermit- ;o5 To get statements on the averaged quantities dealt with
tency effects[12] change the exponents calculated withinj, s paper, ensemble averaging is necessary. This is best
this mean-field theory. In Ref[13] intermittency effects done by repeatedly probing the flow at some fixed phase

have been included into the mean-field theory of R&f.on : : :
a phenomenological basis. One possibility for their effect isafter the respe(;teﬂle kick. Averaging over the results at phase

o .
that the dimensionless energy dissipation ratebecomes 0 7W'" give Reusa,t and averaging over the results at phase
slightly Reynolds number dependent even in the large Rey4t

37f
(V1T 2A-1)~

CE

Similarily, these two regimes are also seen in Fig. 3 wher
we plotted R vs A. In the turbulent re

will give Rg’™, etc.

nolds number limit[13], c,xRe *, with x=(9/8)8¢,/(1 Wg suggest to perform a periodicall){ kicked turbulence
+358¢,/8). Here,5,,~0.03 is the experimentally found de- €Xperiment and to measure Reas a function of bottA and
viation from the classical scaling exponefit=2/3 of the f. To our knowledge, it would be one of the first ones with
second-order velocity structure function. The consequencesPme active control on the type of forcing. Immediate ques-
of this small (k=0.03) scaling correction can straightfor- tions to ask are: Does the level of saturation for large Re
wardly be embodied in the present mean-field approach téndeed only depend on the produtt as suggested by Egs.
periodically kicked turbulence. The result is that in the tur-(11) and (13) or do boundary effects carry on into the

bulent regime the saturation level now obeys strongly turbulent central regime and cause a more subtle
at V(1) relation? If so, an application of the so commonly used vol-
Re o (Af) (13 ume forcing for turbulence becomes more questionable. Do

rather than Eq(11). Equation(13) may offer a new and the (scaling relations between the quantities introduced in

. t .
independent way to experimentally determine intermittency™S Paper, .9, RE(f,A) offer a new way to measure in-
exponents. termittency effects? What modifications arise if forcing and

Another effect related to intermittency is the following: decay do not decouple as assumed in this simple model?

We expect the total energy to build up again and again over The author thanks L. Biferale, M. Brenner, B. Eckhardt,
time scales larger thait and then to suddenly drop because 5ng £ Toschi for discussions. This work is part of the re-
an energy pulsg IS travellmg dpwnsqale. Such *?eha"'or hasc‘earch program of the Stichting voor Fundamenteel Onder-
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meshed homogeneous shear fif8y and in simulations of the Nederlandse Organisatie voor Wetenschappelijk Onder-

eriodically kicked shell models of turbulenpesults to be . -
Bublished.yAs based on a mean-field theo?)iethe model ofzoek(NWO). This research was also supported in part by the

this paper is only applicable to the mean energy and not yguropean Union under Contract No. HPRN-CT-2000-00162
these fluctuations. and by the National Science Foundation under Grant No.

We now come back to an experimental realization. It will PHY94-07194. We also thank the Institute of Theoretical
be easier to perform experiments in a closed system rath&rnySics in Santa Barabara for its hospitality.
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