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We present a study of intermittency in a turbulent channel flow. Scaling exponents of longitudinal
streamwise structure functions,zpyz3, are used as quantitative indicators of intermittency. We find that
near the center of the channel the values ofzpyz3 up to p ­ 7 are consistent with the assumption
of homogeneous and isotropic turbulence. Moving towards the boundaries, we observe a growth of
intermittency which appears to be related to an intensified presence of ordered vortical structures. We
argue that the clear transition in the nature of intermittency appearing in the region close to the wall
is related to a new length scale which becomes the relevant one for scaling in high shear flows.
[S0031-9007(99)09455-7]
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Spatiotemporal intermittency is one of the most intrigu
ing properties of fluid dynamics turbulence. Intermittenc
can be described by means of the scaling behavior of
structure functionsSpsrd built out of the velocity differ-
ence, namely,Spsrd ­ kdysrdpl wheredysrd ­ d $ys$rd ?
$ryr. In the inertial range,Spsrd scale homogeneously
with exponentszp, i.e.,Spsrd ~ rzp . Intermittency reflects
in anomalous values (i.e., different from the Kolmogoro
1941 predictionzp ­ py3) of the zp (see Frisch [1]).
Although many efforts have been devoted to the unde
standing of intermittency in homogeneous and isotrop
turbulence, the case of wall turbulence dominated by ve
strong shear flow is still under debate. In fact, while th
decrease of scaling exponents towards the wall has b
recently pointed out by both experimental and numeric
investigations [2,3], a physical explanation of this effect
still missing.

The main objective of this paper is to analyze th
scaling exponents (if any) and to explore their function
dependence on the nonhomogeneous coordinate. To
purpose, we investigate numerically a channel flow [4,5
possibly the simplest instance of a shear-dominated flo

The problem of characterizing the complex phenom
ena arising in the near-wall region, and their relation
the lack of isotropy, has been analyzed in depth by se
eral authors (e.g., see Antoniaet al. [6] and L’vov and
Procaccia [7]). With specific reference to intermittenc
Kuznetsovet al. [8] presented an experimental investiga
tion of fine-scale structure of turbulence for different she
flows. Even though they recognize that scaling expone
may be different for various flows or various location
of the same flow, they do not seem to address the is
of the spatial dependence of the exponentszp. This is-
sue is examined in a recent paper by Camussiet al. [9],
in which the authors propose a technique to identify c
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herent structures and relate them to the increase of
termittency in (homogeneous and nonhomogeneous)
turbulence. The present work is fairly distinct in pu
pose, since we analyze the spatial behavior of the s
ing exponents and their link to coarse-grained features
the flow in the near-wall region. Besides the fundame
tal interest on its own, the existence of such correlati
could prove very valuable for the design of more efficie
large-eddy-simulation models (see, for instance, Scotti a
Menevau [10]).

We have performed a direct numerical simulatio
achieving a high statistical accuracy (about103 in time
units U0yh, where U0 is the centerline velocity andh
is the channel half-width). Numerical simulations hav
been performed on a massively parallel machine us
a LBE (lattice Boltzmann equation) code. The spat
resolution of the simulation was256 3 128 3 128 grid
points. Periodic boundary conditions were imposed alo
the streamwise (x) and spanwise (z) directions, whereas
no-slip boundary conditions were applied at the top a
the bottom planes (normal to wall direction,y). The
Reynolds number is Re. 3000. Further details about
the numerical scheme can be found in [11] and referen
therein. In the following we use wall units defined a
y1 ­ y ? ypyn andy1 ­ yyyp whereyp is the friction
velocity [12]. In these units, the channel is640 long, 320
wide, and320 high.

To study intermittency in the channel, we introduce t
following y-dependent longitudinal streamwise structu
functions:

Spsr1, y1d ­ kjyxsx1 1 r1, y1, z1d

2 yxsx1, y1, z1djpl . (1)

The average is taken at a fixedy1 value (the normal to
wall coordinate). The quantitiesSpsr1, y1d have been
© 1999 The American Physical Society
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measured for each value ofy. Our data set allows enough
statistical accuracy to estimateSpsr1, y1d for p # 7.
Because of the low Reynolds number, we use extend
self-similarity (ESS) [13] in order to extractzp values.
We remind that ESS consists of measuring structure fun
tions as a function ofS3 rather than in terms of space sepa
ration r. This procedure allows a much better accura
for the evaluation of the scaling exponents, although
does not provide any estimate of they1 dependence of
z3. In order to compute the scaling exponentszpsyd
we have analyzed the ESS local slopesDp,qsr1, y1d ­
d logfSpsr1, y1dgyd logfSqsr1, y1dg for each value of
the y1 coordinate. We have found two regions iny1,
hereafter referred to as region H (“homogeneous”) a
region B (“boundary”), respectively, where well define
constant local slopes for the scaling exponents can
detected. Region H is close to the center of the chan
(y1 $ 100) while region B is close to the viscous sublaye
(20 # y1 # 50). In region H, the scaling exponents
zpsHd are found to be approximately the same as t
ones measured in homogeneous and isotropic turbulen
On the other hand, in region B the scaling exponen
zpsBd have been found to be much smaller thanzpsHd.
Moreover, while in region H the scaling range starts
r1 $ 25, in region B the scaling range starts atr1 $ 50,
consistently with previous findings [14]. In the interme
diate region between region H and region B, it is difficu
to identify a range inr where a scaling exponent can b
defined with enough confidence.

In order to clarify the discussion, we show in Figs.
and 2 the local slopesD6,3sr1, y1d and D4,2sr1, y1d,
respectively, fory1 ­ 30, 70, 80, 150. In the intermediate
region (i.e.,y1 ­ 70, 80), the analysis in terms of local
slope does not provide a well defined scaling expone
since the plateau inr1 is very short. In Figs. 3 and 4
we showz6yz3 and z4yz2, respectively, as a function of
y1 with the associated error bars. The large error bars
the region50 # y1 # 100 indicate that scaling exponents
defined throughDp,qsr, y1d are poorly defined and should
be considered just as effective exponents obtained by
power law fit of the ESS analysis. The situation describ
in Figs. 1 and 3 is similar for all the scaling exponentszp

computed in our analysis. Finally, in Table I, we list th
numerical values of the scaling exponents for region B, f
region H, and for homogeneous isotropic turbulence [15
Our results indicate that there is a transition in the natu
of intermittency between region H and region B. While i
region H intermittency is close to what has been observ
in isotropic and homogeneous turbulence, in region
much stronger intermittency is observed, which reflec
in lower values of the scaling exponentszp for p . 3
and larger ones forp , 3. Between the two regions, a
competition between the two types of intermittency shou
take place, leading to a poorly defined scaling law.

An important question to be addressed concerns
physical mechanisms which produce much stronger int
ed
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FIG. 1. Local slopeD6,3 for four different values ofy1. The
straight lines represent the fit for H and B regions.

mittency in region B with respect to region H. A pre-
liminary answer to this question is given in Fig. 5 wher
the momentum fluxky0

xy0
yl (a particular component of

the Reynolds stress tensor), normalized by its maximu
ky0

xy0
ylM , is shown as a function ofy1. The momen-

tum flux has a peak within the region B while it goes to
zero in region H. This behavior clearly indicates that in
termittency grows dramatically in a region characterize
by strong mean shear (strong momentum fluxes). T
link between momentum flux and the increase of intermi
tency can be further investigated by looking at the ins
of Fig. 5 where we representz6s ydyz3s yd from Fig. 3 and
the rescaled expression

z6s y1d
z3s y1d

2
z6sHd
z3sHd

­

√
z6sBd
z3sBd

2
z6sHd
z3sHd

!
ky0

xy0
yl

ky0
xy0

ylM
. (2)

0 50 100 150
r+

1.5

1.6

1.7

1.8

1.9

2

2.1

Lo
ca

lS
lo

p
e

y+ = 30
y+ = 70
y+ = 80
y+ = 130
fit = 1.80
fit = 1.53

FIG. 2. Local slopeD4,2 for four different values ofy1. The
straight lines represent the fit for H and B regions.
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FIG. 3. Scaling exponentsz6yz3 as a function ofy1. The
straight lines represent the fit for H and B regions.

From Fig. 3, we can argue that the increase of interm
tency should be related to the increase of momentum fl
and, therefore, to the mean (local) shear.

Moreover, it is well known that turbulent flows near the
wall are characterized by well defined coherent structure
In Fig. 5 we show the rms helicityh (hrms ­ ks $v ? $ydlrms)
as a function ofy1 which is again peaked in region B.
Coherent structures carry a significant amount of helici
while dissipation is found to peak in the interstitial regio
between helicity-carrying structures [16]. Indeed, a clea
cut anticorrelation between helicity fluctuations and diss
pation is systematically detected in our numerical sim
lations. Thus, the alternate presence of regions of hi
helicity and regions of high dissipation may be respon
sible for the enhancement of intermittency in region B.
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FIG. 4. Scaling exponentsz4yz2 as a function ofy1. The
straight lines represent the fit for H and B regions.
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TABLE I. Normalized scaling exponents in regions H an
B for the present simulation, as compared with the valu
for homogeneous isotropic turbulencez hom

p and for a passive
scalarz

ps
p .

p szpyz3dhom szpyz3dH szpyz3dB z PS
p z PS

p yz
PS
3

1 0.36 0.37 0.44 0.37 0.46
2 0.70 0.70 0.77 0.62 0.77
3 1.00 1.00 1.00 0.80 1.00
4 1.28 1.28 1.17 0.94 1.17
5 1.54 1.54 1.31 1.04 1.30
6 1.78 1.78 1.44 1.12 1.40
7 2.00 2.00 1.55 1.20 1.50

A more quantitative way to investigate the increas
of intermittency in region B can be achieved by th
following argument. According to the Howarth–Von
Karman–Kolmogorov equation for homogeneous she
flows turbulence (see Hinze [17]), one can define a leng
scaleLss yd in terms of the mean energy dissipationes yd
and the mean shearSs yd, as follows:

Lss yd ­

√
es yd

Ss yd3

!1y2

. (3)

In the presence of mean shearS, for any scaler we can
define two characteristic time scales, namely, the ed
turnover timerydysrd and 1yS. We expect that when
the mean shear is large enough, the eddy turnover time
not the relevant time scale for energy transfer from lar
to small scales. The inequalityrydysrd , 1yS gives
the range of scalesr where the effect of shear should
not be relevant to small scale statistics. By using t
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FIG. 5. The momentum fluxky0
xy0

yl (dashed line), normalized
by its maximum, is presented together with normalized di
sipation (straight line) and rms helicity (dotted line). In th
inset the scaling exponentz6yz3 is presented together with
the rescaled momentum flux as defined by Eq. (2) (contin
ous line).
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FIG. 6. The characteristic scaleLss y1d is presented as a
function of y1 (continuous line). The dotted line is reported to
enlighten the growth ofLs out of the wall region.

Kolmogorov estimatedysrd , e1y3r1y3, we find that the
above inequality can be written asr # Ls. Thus, forr #

Ls one expects that the scaling properties of turbulen
are not affected by the mean shear. On the other hand,
r $ Ls one expects that the mean shear may significan
change the amount of intermittency. In our numeric
simulation Lss yd becomes small only in the region B,
i.e., where an increase of intermittency is observed (s
Fig. 6). This result confirms our finding of a rathe
clear transition in the physical nature of intermittency
somehow similar to the Bolgiano scaling appearing
the thermal turbulence. Hence, this preliminary analys
seems to indicate that the change of scaling expone
cannot be reduced to a perturbative effect in terms
the mean shear. As a final observation, by inspecti
the peak value approached by thezps yd exponents near
the wall, we find an interesting similarity with the values
z PS

p , pertaining to a passive scalar advected by a turbule
3D homogeneous and isotropic velocity field [18]. Value
of passive scalarz PS

p are shown together with our presen
data in Table I.

Table I suggests that the passive scalar behavior can
traced to these helicity-carrying coherent structures bei
passively advected by the flow. This observation is
qualitative agreement with the results reported by Pum
and Shraiman [19].

In conclusion, we have rather clear evidence that,
wall bounded turbulence, the increase of intermittency ne
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the wall is strongly related to the increase of the mea
shear. We have introduced a characteristic length sca
Ls induced by the mean shear whose physical meani
is equivalent to the Bolgiano scale for natural convection
Velocity fluctuations at scalesr $ Ls are observed to
be more intermittent than in homogeneous and isotrop
turbulence.
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