447 research outputs found
Instant preheating mechanism and UHECR
Top-down models assume that the still unexplained Ultra High Energy Cosmic
Rays (UHECR's) are the decay products of superheavy particles. Such particles
may have been produced by one of the post-inflationary reheating mechanisms and
may account for a fraction of the cold dark matter. In this paper, we assess
the phenomenological applicability of the simplest instant preheating framework
not to describe a reheating process, but as a mechanism to generate relic
supermassive particles as possible sources of UHECR's. We use cosmic ray flux
and cold dark matter observational data to constrain the parameters of the
model.Comment: 7 pages, 2 figures, submitted to PR
Constraining the primordial spectrum of metric perturbations from gravitino and moduli production
We consider the production of gravitinos and moduli fields from quantum
vacuum fluctuations induced by the presence of scalar metric perturbations at
the end of inflation. We obtain the corresponding occupation numbers, up to
first order in perturbation theory, in terms of the power spectrum of the
metric perturbations. We compute the limits imposed by nucleosynthesis on the
spectral index for different models with constant . The results show
that, in certain cases, such limits can be as strong as , which is
more stringent than those coming from primordial black hole production.Comment: 16 pages, LaTeX, 5 figures. Corrected figures, new references
included. Final version to appear in Phys. Rev.
Impact of Climate, Agriculture and Vegetation in the Sahel in the recent past : the CAVIARS Projet. [P-3330-53]
The semi-arid regions of the Earth are particularly vulnerable to wind erosion. The Sahelian region experienced contrasted climatic conditions during the last decades, with severe drought in the 70's and 80's and a relative re-greening in the recent years. Over the same period, changes in land use have occurred with an increase of the cultivated surfaces leading to a decrease of fallows and rangelands. As a result, a significant proportion of the land is bare or sparsely vegetated, and thus is not efficiently protected from the erosive action of wind. In this region, wind erosion tends to decrease the productive capacity of the soils whose fertility is already very low. In addition, the impact of wind erosion is expected to increase significantly in the near future (1) in relation with the expected changes in climate (in particular the modifications of precipitation and surface wind) and (2) in response to the increasing land use due to population increase and the related food needs. The aims of the CAVIARS project (Climate, Agriculture and Vegetation: Impacts on Aeolian ERosion in the Sahel) are to develop an integrated modeling tool to describe the evolution of wind erosion in the Sahel in connection with climatic and land use changes, to validate this tool in the current period by making the best possible use of the numerous data sets acquired in recent years over West Africa, and to test its ability to reproduce specific events (such as the drought in the Sahel) of the recent past (about the last 50 years). This project is based on a modeling approach of this recent past (hindcasts) that is justified by the need to ensure the robustness of the simulations with different forcings prior to any simulation of future scenarios. The proposed strategy is (1) to develop or optimize reliable modeling tools for quantifying the various terms (land use, changes in aridity...) responsible for changes in the intensity of wind erosion (2) to synthesize quality checked observations, that can be used as direct or indirect indicators of wind erosion (precipitation time series, changes in vegetation cover, atmospheric dust load,...) (3) to implement a validation strategy based on the quantification of wind erosion both locally, measured on grazed and cultivated plots, and at the regional and continental scales. (Texte intégral
Chaotic Inflationary Universe on Brane
The chaotic inflationary model of the early universe, proposed by Linde is
explored in the brane world considering matter described by a minimally coupled
self interacting scalar field. We obtain cosmological solutions which admit
evolution of a universe either from a singularity or without a singularity. It
is found that a very weakly coupled self-interacting scalar field is necessary
for a quartic type potential in the brane world model compared to that
necessary in general relativity. In the brane world sufficient inflation may be
obtained even with an initial scalar field having value less than the Planck
scale. It is found that if the universe is kinetic energy dominated to begin
with, it transits to an inflationary stage subsequently.Comment: 13 pages, no fig., accepted in Physical Review
Inflation and late time acceleration in braneworld cosmological models with varying brane tension
Braneworld models with variable brane tension introduce a new
degree of freedom that allows for evolving gravitational and cosmological
constants, the latter being a natural candidate for dark energy. We consider a
thermodynamic interpretation of the varying brane tension models, by showing
that the field equations with variable can be interpreted as
describing matter creation in a cosmological framework. The particle creation
rate is determined by the variation rate of the brane tension, as well as by
the brane-bulk energy-matter transfer rate. We investigate the effect of a
variable brane tension on the cosmological evolution of the Universe, in the
framework of a particular model in which the brane tension is an exponentially
dependent function of the scale factor. The resulting cosmology shows the
presence of an initial inflationary expansion, followed by a decelerating
phase, and by a smooth transition towards a late accelerated de Sitter type
expansion. The varying brane tension is also responsible for the generation of
the matter in the Universe (reheating period). The physical constraints on the
model parameters, resulted from the observational cosmological data, are also
investigated.Comment: 25 pages, 8 figures, accepted for publication in European Physical
Journal
Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory
We adopt the general formalism, which was developed in Paper I
(arXiv:0708.1233) to analyze the evolution of a quantized time-dependent
oscillator, to address several questions in the context of quantum field theory
in time dependent external backgrounds. In particular, we study the question of
emergence of classicality in terms of the phase space evolution and its
relation to particle production, and clarify some conceptual issues. We
consider a quantized scalar field evolving in a constant electric field and in
FRW spacetimes which illustrate the two extreme cases of late time adiabatic
and highly non-adiabatic evolution. Using the time-dependent generalizations of
various quantities like particle number density, effective Lagrangian etc.
introduced in Paper I, we contrast the evolution in these two limits bringing
out key differences between the Schwinger effect and evolution in the de Sitter
background. Further, our examples suggest that the notion of classicality is
multifaceted and any one single criterion may not have universal applicability.
For example, the peaking of the phase space Wigner distribution on the
classical trajectory \emph{alone} does not imply transition to classical
behavior. An analysis of the behavior of the \emph{classicality parameter},
which was introduced in Paper I, leads to the conclusion that strong particle
production is necessary for the quantum state to become highly correlated in
phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the
first being arXiv:0708.1233 [gr-qc]; high resolution figures available from
the authors on reques
Braneworld Dynamics of Inflationary Cosmologies with Exponential Potentials
In this work we consider Randall-Sundrum braneworld type scenarios, in which
the spacetime is described by a five-dimensional manifold with matter fields
confined in a domain wall or three-brane. We present the results of a
systematic analysis, using dynamical systems techniques, of the qualitative
behaviour of Friedmann-Lemaitre-Robertson-Walker type models, whose matter is
described by a scalar field with an exponential potential. We construct the
state spaces for these models and discuss how their structure changes with
respect to the general-relativistic case, in particular, what new critical
points appear and their nature and the occurrence of bifurcation.Comment: 15 pages, 9 figures, RevTex 4. Submitted to Physical Review
Dynamics of Brane-World Cosmological Models
We show that generically the initial singularity is isotropic in spatially
homogeneous cosmological models in the brane-world scenario. We then argue that
it is plausible that the initial singularity is isotropic in typical brane
world cosmological models. Therefore, brane cosmology naturally gives rise to a
set of initial data that provide the conditions for inflation to subsequently
take place, thereby solving the initial conditions problem and leading to a
self--consistent and viable cosmology.Comment: Final version. To appear in Physical Revie
Simple Dynamics on the Brane
We apply methods of dynamical systems to study the behaviour of the
Randall-Sundrum models. We determine evolutionary paths for all possible
initial conditions in a 2-dimensional phase space and we investigate the set of
accelerated models. The simplicity of our formulation in comparison to some
earlier studies is expressed in the following: our dynamical system is a
2-dimensional Hamiltonian system, and what is more advantageous, it is free
from the degeneracy of critical points so that the system is structurally
stable. The phase plane analysis of Randall-Sundrum models with isotropic
Friedmann geometry clearly shows that qualitatively we deal with the same types
of evolution as in general relativity, although quantitatively there are
important differences.Comment: an improved version, 34 pages, 9 eps figure
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
- …
