1,291 research outputs found

    The effect of fire on two Eastern Cape Cyclopia species (Fabaceae)

    Get PDF
    Seedling recruitment of the Eastern Cape endemics Cyclopia longifolia J.R.T. Vogel and Cyclopia pubescens Eckl. & Zeyh. was analysed after fire. Cyclopia longifolia seedling recruitment after treatments of fire; cleared and smoked; and cleared only was comparatively low; recruitment of 2.8 (after 10weeks) to 3.8 seedlings (after 13months) per adult was recorded. Cyclopia longifolia was found to be a resprouter as well as seeder. A population of Cyclopia pubescens was exposed to a veld-fire, with a resultant recruitment of 61 seedlings (5months after burn) to 227 seedlings (17months after burn) per adult. The difference in recruitment success can be ascribed, in part, to environmental conditions that strongly influenced seed germination and seedling survival. Cyclopia longifolia preferentially allocates its resources to regeneration rather than reproduction

    Autobiographically Significant Concepts: More Episodic than Semantic in Nature? An Electrophysiological Investigation of Overlapping Types of Memory

    Get PDF
    A common assertion is that semantic memory emerges from episodic memory, shedding the distinctive contexts associated with episodes over time and/or repeated instances. Some semantic concepts, however, may retain their episodic origins or acquire episodic information during life experiences. The current study examined this hypothesis by investigating the ERP correlates of autobiographically significant (AS) concepts, that is, semantic concepts that are associated with vivid episodic memories. We inferred the contribution of semantic and episodic memory to AS concepts using the amplitudes of the N400 and late positive component, respectively. We compared famous names that easily brought to mind episodic memories (high AS names) against equally famous names that did not bring such recollections to mind (low AS names) on a semantic task (fame judgment) and an episodic task (recognition memory). Compared with low AS names, high AS names were associated with increased amplitude of the late positive component in both tasks. Moreover, in the recognition task, this effect of AS was highly correlated with recognition confidence. In contrast, the N400 component did not differentiate the high versus low AS names but, instead, was related to the amount of general knowledge participants had regarding each name. These results suggest that semantic concepts high in AS, such as famous names, have an episodic component and are associated with similar brain processes to those that are engaged by episodic memory. Studying AS concepts may provide unique insights into how episodic and semantic memory interact

    Sb-based low-noise avalanche photodiodes

    Get PDF
    Accurate detection of weak optical signals is a key function for a wide range of applications. A key performance parameter is the receiver signal-to-noise ratio, which depends on the noise of the photodetector and the following electrical circuitry. The circuit noise is typically larger than the noise of photodetectors that do not have internal gain. As a result, a detector that provides signal gain can achieve higher sensitivity. This is accomplished by increasing the photodetector gain until the noise associated with the gain mechanism is comparable to that of the output electrical circuit. For avalanche photodiodes (APDs), the noise that arises from the gain mechanism, impact ionization, increases with gain and depends on the material from which the APD is fabricated. Si APDs have established the state-of-the-art for low-noise gain for the past five decades. Recently, APDs fabricated from two Sb-based III-V compound quaternary materials, AlxIn1-xAsySb1-y and AlxGa1-xAsySb1-y, have achieved noise characteristics comparable to those of Si APDs with the added benefit that they can operate in the short-wave infrared (SWIR) and extended SWIR spectral regions. This paper describes the materials and device characteristics of these APDs and their performance in different spectral regions

    The second and third Sonine coefficients of a freely cooling granular gas revisited

    Full text link
    In its simplest statistical-mechanical description, a granular fluid can be modeled as composed of smooth inelastic hard spheres (with a constant coefficient of normal restitution α\alpha) whose velocity distribution function obeys the Enskog-Boltzmann equation. The basic state of a granular fluid is the homogeneous cooling state, characterized by a homogeneous, isotropic, and stationary distribution of scaled velocities, F(c)F(\mathbf{c}). The behavior of F(c)F(\mathbf{c}) in the domain of thermal velocities (c1c\sim 1) can be characterized by the two first non-trivial coefficients (a2a_2 and a3a_3) of an expansion in Sonine polynomials. The main goals of this paper are to review some of the previous efforts made to estimate (and measure in computer simulations) the α\alpha-dependence of a2a_2 and a3a_3, to report new computer simulations results of a2a_2 and a3a_3 for two-dimensional systems, and to investigate the possibility of proposing theoretical estimates of a2a_2 and a3a_3 with an optimal compromise between simplicity and accuracy.Comment: 12 pages, 5 figures; v2: minor change

    Constraining the variation of the coupling constants with big bang nucleosynthesis

    Get PDF
    We consider the possibility of the coupling constants of the SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1) gauge interactions at the time of big bang nucleosynthesis having taken different values from what we measure at present, and investigate the allowed difference requiring the shift in the coupling constants not violate the successful calculation of the primordial abundances of the light elements. We vary gauge couplings and Yukawa couplings (fermion masses) using a model in which their relative variations are governed by a single scalar field, dilaton, as found in string theory. The results include a limit on the fine structure constant 6.0×104<ΔαEM/αEM<1.5×104-6.0\times10^{-4}<\Delta\alpha_{EM}/\alpha_{EM}<1.5\times10^{-4}, which is two orders stricter than the limit obtained by considering the variation of αEM\alpha_{EM} alone.Comment: 7 page

    Study of ATLAS sensitivity to FCNC top decays

    Get PDF
    The ATLAS experiment sensitivity to top quark Flavour Changing Neutral Current (FCNC) decays was studied at LHC using ttbar events. While one of the top quarks is expected to follow the dominant Standard Model decay t->bW, the other decays through a FCNC channel, i.e. t-> Z u(c), t-> gamma u(c) or t-> g u(c). Different types of analyses, applied to each FCNC decay mode, were compared. The FCNC branching ratio sensitivity (assuming a 5sigma signal significance) and 95% confidence level limits on the branching ratios (in the hypothesis of signal absence) were obtained

    Reducing uncertainty in the assessment of the Australian spanner crab fishery

    Get PDF
    In collaboration with the New South Wales Department of Primary Industries we compared the effectiveness of the spanner crab monitoring systems used by New South Wales and Queensland and developed a fishery-independent survey protocol acceptable to both states. The objectives of this project were to: 1. Determine the age at which spanner crabs (Ranina ranina) recruit to the fishery 2. Develop a common methodology for monitoring and assessing the Australian spanner crab stock 3. Investigate sources of variability in apparent population density

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Electronic polarization in pentacene crystals and thin films

    Full text link
    Electronic polarization is evaluated in pentacene crystals and in thin films on a metallic substrate using a self-consistent method for computing charge redistribution in non-overlapping molecules. The optical dielectric constant and its principal axes are reported for a neutral crystal. The polarization energies P+ and P- of a cation and anion at infinite separation are found for both molecules in the crystal's unit cell in the bulk, at the surface, and at the organic-metal interface of a film of N molecular layers. We find that a single pentacene layer with herring-bone packing provides a screening environment approaching the bulk. The polarization contribution to the transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and increases by only ~ 10% at surfaces and interfaces, respectively. We also compute the polarization energy of charge-transfer (CT) states with fixed separation between anion and cation, and compare to electroabsorption data and to submolecular calculations. Electronic polarization of ~ 1 eV per charge has a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde

    Advancing ethics review practices in AI research

    Get PDF
    The implementation of ethics review processes is an important first step for anticipating and mitigating the potential harms of AI research. Its long-term success, however, requires a coordinated community effort, to support experimentation with different ethics review processes, to study their effect, and to provide opportunities for diverse voices from the community to share insights and foster norms
    corecore