1,499 research outputs found
Autobiographically Significant Concepts: More Episodic than Semantic in Nature? An Electrophysiological Investigation of Overlapping Types of Memory
A common assertion is that semantic memory emerges from episodic memory, shedding the distinctive contexts associated with episodes over time and/or repeated instances. Some semantic concepts, however, may retain their episodic origins or acquire episodic information during life experiences. The current study examined this hypothesis by investigating the ERP correlates of autobiographically significant (AS) concepts, that is, semantic concepts that are associated with vivid episodic memories. We inferred the contribution of semantic and episodic memory to AS concepts using the amplitudes of the N400 and late positive component, respectively. We compared famous names that easily brought to mind episodic memories (high AS names) against equally famous names that did not bring such recollections to mind (low AS names) on a semantic task (fame judgment) and an episodic task (recognition memory). Compared with low AS names, high AS names were associated with increased amplitude of the late positive component in both tasks. Moreover, in the recognition task, this effect of AS was highly correlated with recognition confidence. In contrast, the N400 component did not differentiate the high versus low AS names but, instead, was related to the amount of general knowledge participants had regarding each name. These results suggest that semantic concepts high in AS, such as famous names, have an episodic component and are associated with similar brain processes to those that are engaged by episodic memory. Studying AS concepts may provide unique insights into how episodic and semantic memory interact
The second and third Sonine coefficients of a freely cooling granular gas revisited
In its simplest statistical-mechanical description, a granular fluid can be
modeled as composed of smooth inelastic hard spheres (with a constant
coefficient of normal restitution ) whose velocity distribution
function obeys the Enskog-Boltzmann equation. The basic state of a granular
fluid is the homogeneous cooling state, characterized by a homogeneous,
isotropic, and stationary distribution of scaled velocities, .
The behavior of in the domain of thermal velocities ()
can be characterized by the two first non-trivial coefficients ( and
) of an expansion in Sonine polynomials. The main goals of this paper are
to review some of the previous efforts made to estimate (and measure in
computer simulations) the -dependence of and , to report new
computer simulations results of and for two-dimensional systems,
and to investigate the possibility of proposing theoretical estimates of
and with an optimal compromise between simplicity and accuracy.Comment: 12 pages, 5 figures; v2: minor change
Constraining the variation of the coupling constants with big bang nucleosynthesis
We consider the possibility of the coupling constants of the gauge interactions at the time of big bang nucleosynthesis
having taken different values from what we measure at present, and investigate
the allowed difference requiring the shift in the coupling constants not
violate the successful calculation of the primordial abundances of the light
elements. We vary gauge couplings and Yukawa couplings (fermion masses) using a
model in which their relative variations are governed by a single scalar field,
dilaton, as found in string theory. The results include a limit on the fine
structure constant
, which is
two orders stricter than the limit obtained by considering the variation of
alone.Comment: 7 page
Study of ATLAS sensitivity to FCNC top decays
The ATLAS experiment sensitivity to top quark Flavour Changing Neutral
Current (FCNC) decays was studied at LHC using ttbar events. While one of the
top quarks is expected to follow the dominant Standard Model decay t->bW, the
other decays through a FCNC channel, i.e. t-> Z u(c), t-> gamma u(c) or t-> g
u(c). Different types of analyses, applied to each FCNC decay mode, were
compared. The FCNC branching ratio sensitivity (assuming a 5sigma signal
significance) and 95% confidence level limits on the branching ratios (in the
hypothesis of signal absence) were obtained
Reducing uncertainty in the assessment of the Australian spanner crab fishery
In collaboration with the New South Wales Department of Primary Industries we compared the effectiveness of the spanner crab monitoring systems used by New South Wales and Queensland and developed a fishery-independent survey protocol acceptable to both states.
The objectives of this project were to:
1. Determine the age at which spanner crabs (Ranina ranina) recruit to the fishery
2. Develop a common methodology for monitoring and assessing the Australian spanner crab stock
3. Investigate sources of variability in apparent population density
Diffusion of impurities in a granular gas
Diffusion of impurities in a granular gas undergoing homogeneous cooling
state is studied. The results are obtained by solving the Boltzmann--Lorentz
equation by means of the Chapman--Enskog method. In the first order in the
density gradient of impurities, the diffusion coefficient is determined as
the solution of a linear integral equation which is approximately solved by
making an expansion in Sonine polynomials. In this paper, we evaluate up to
the second order in the Sonine expansion and get explicit expressions for
in terms of the restitution coefficients for the impurity--gas and gas--gas
collisions as well as the ratios of mass and particle sizes. To check the
reliability of the Sonine polynomial solution, analytical results are compared
with those obtained from numerical solutions of the Boltzmann equation by means
of the direct simulation Monte Carlo (DSMC) method. In the simulations, the
diffusion coefficient is measured via the mean square displacement of
impurities. The comparison between theory and simulation shows in general an
excellent agreement, except for the cases in which the gas particles are much
heavier and/or much larger than impurities. In theses cases, the second Sonine
approximation to improves significantly the qualitative predictions made
from the first Sonine approximation. A discussion on the convergence of the
Sonine polynomial expansion is also carried out.Comment: 9 figures. to appear in Phys. Rev.
Electronic polarization in pentacene crystals and thin films
Electronic polarization is evaluated in pentacene crystals and in thin films
on a metallic substrate using a self-consistent method for computing charge
redistribution in non-overlapping molecules. The optical dielectric constant
and its principal axes are reported for a neutral crystal. The polarization
energies P+ and P- of a cation and anion at infinite separation are found for
both molecules in the crystal's unit cell in the bulk, at the surface, and at
the organic-metal interface of a film of N molecular layers. We find that a
single pentacene layer with herring-bone packing provides a screening
environment approaching the bulk. The polarization contribution to the
transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and
increases by only ~ 10% at surfaces and interfaces, respectively. We also
compute the polarization energy of charge-transfer (CT) states with fixed
separation between anion and cation, and compare to electroabsorption data and
to submolecular calculations. Electronic polarization of ~ 1 eV per charge has
a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde
Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials
The vibrational density of states (VDOS) of nanoclusters and nanocrystalline
materials are derived from molecular-dynamics simulations using empirical
tight-binding potentials. The results show that the VDOS inside nanoclusters
can be understood as that of the corresponding bulk system compressed by the
capillary pressure. At the surface of the nanoparticles the VDOS exhibits a
strong enhancement at low energies and shows structures similar to that found
near flat crystalline surfaces. For the nanocrystalline materials an increased
VDOS is found at high and low phonon energies, in agreement with experimental
findings. The individual VDOS contributions from the grain centers, grain
boundaries, and internal surfaces show that, in the nanocrystalline materials,
the VDOS enhancements are mainly caused by the grain-boundary contributions and
that surface atoms play only a minor role. Although capillary pressures are
also present inside the grains of nanocrystalline materials, their effect on
the VDOS is different than in the cluster case which is probably due to the
inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.
Is It Rational to Assume that Infants Imitate Rationally? A Theoretical Analysis and Critique
It has been suggested that preverbal infants evaluate the efficiency of others' actions (by applying a principle of rational action) and that they imitate others' actions rationally. The present contribution presents a conceptual analysis of the claim that preverbal infants imitate rationally. It shows that this ability rests on at least three assumptions: that infants are able to perceive others' action capabilities, that infants reason about and conceptually represent their own bodies, and that infants are able to think counterfactually. It is argued that none of these three abilities is in place during infancy. Furthermore, it is shown that the idea of a principle of rational action suffers from two fallacies. As a consequence, is it suggested that it is not rational to assume that infants imitate rationally. Copyright (C) 2012 S. Karger AG, Base
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
- …
