766 research outputs found
The Spin Glass Transition : Exponents and Dynamics
Numerical simulations on Ising Spin Glasses show that spin glass transitions
do not obey the usual universality rules which hold at canonical second order
transitions. On the other hand the dynamics at the approach to the transition
appear to take up a universal form for all spin glasses. The implications for
the fundamental physics of transitions in complex systems are addressed.Comment: 4 pages (Latex) with 3 figures (postscript), accepted for publication
in Physica
Enhanced critical current density of YBa2Cu3Ox films grown on Nd1/3Eu1/3Gd1/3Ba2Cu3Ox with nano-undulated surface morphology
We report a simple and easily controllable method where a nano-undulated
surface morphology of Nd1/3Eu1/3Gd1/3Ba2Cu3Ox (NEG) films leads to a
substantial increase in the critical current density in superconducting
YBa2Cu3Ox (YBCO) films deposited by pulsed laser deposition on such NEG layers.
The enhancement is observed over a wide range of fields and temperatures.
Transmission electron microscopy shows that such YBCO films possess a high
density of localized areas, typically 20 x 20 nm2 in size, where distortion of
atomic planes give rotational (2 to 5 degrees) moire patterns. Their
distribution is random and uniform, and expected to be the origin of the
enhanced flux pinning. Magneto-optical imaging shows that these films have
excellent macroscopic magnetic uniformity.Comment: 4 pages, 4 figure
Constrained spin dynamics description of random walks on hierarchical scale-free networks
We study a random walk problem on the hierarchical network which is a
scale-free network grown deterministically. The random walk problem is mapped
onto a dynamical Ising spin chain system in one dimension with a nonlocal spin
update rule, which allows an analytic approach. We show analytically that the
characteristic relaxation time scale grows algebraically with the total number
of nodes as . From a scaling argument, we also show the
power-law decay of the autocorrelation function C_{\bfsigma}(t)\sim
t^{-\alpha}, which is the probability to find the Ising spins in the initial
state {\bfsigma} after time steps, with the state-dependent non-universal
exponent . It turns out that the power-law scaling behavior has its
origin in an quasi-ultrametric structure of the configuration space.Comment: 9 pages, 6 figure
Absence of Phase Stiffness in the Quantum Rotor Phase Glass
We analyze here the consequence of local rotational-symmetry breaking in the
quantum spin (or phase) glass state of the quantum random rotor model. By
coupling the spin glass order parameter directly to a vector potential, we are
able to compute whether the system is resilient (that is, possesses a phase
stiffness) to a uniform rotation in the presence of random anisotropy. We show
explicitly that the O(2) vector spin glass has no electromagnetic response
indicative of a superconductor at mean-field and beyond, suggesting the absence
of phase stiffness. This result confirms our earlier finding (PRL, {\bf 89},
27001 (2002)) that the phase glass is metallic, due to the main contribution to
the conductivity arising from fluctuations of the superconducting order
parameter. In addition, our finding that the spin stiffness vanishes in the
quantum rotor glass is consistent with the absence of a transverse stiffness in
the Heisenberg spin glass found by Feigelman and Tsvelik (Sov. Phys. JETP, {\bf
50}, 1222 (1979).Comment: 8 pages, revised version with added references on the vanishing of
the stiffness constant in the Heisenberg spin glas
The Potts Fully Frustrated model: Thermodynamics, percolation and dynamics in 2 dimensions
We consider a Potts model diluted by fully frustrated Ising spins. The model
corresponds to a fully frustrated Potts model with variables having an integer
absolute value and a sign. This model presents precursor phenomena of a glass
transition in the high-temperature region. We show that the onset of these
phenomena can be related to a thermodynamic transition. Furthermore this
transition can be mapped onto a percolation transition. We numerically study
the phase diagram in 2 dimensions (2D) for this model with frustration and {\em
without} disorder and we compare it to the phase diagram of the model with
frustration {\em and} disorder and of the ferromagnetic model.
Introducing a parameter that connects the three models, we generalize the exact
expression of the ferromagnetic Potts transition temperature in 2D to the other
cases. Finally, we estimate the dynamic critical exponents related to the Potts
order parameter and to the energy.Comment: 10 pages, 10 figures, new result
Magnetic relaxation phenomena and cluster glass properties of La{0.7-x}Y{x}Ca{0.3}MnO{3} manganites
The dynamic magnetic properties of the distorted perovskite system
La{0.7-x}Y{x}Ca{0.3}MnO{3} (0 <= x <= 0.15) have been investigated by
ac-susceptibility and dc magnetization measurements, with emphasis on
relaxation and aging studies. They evidence for x >= 0.10 the appearance of a
metallic cluster glass phase, that develops just below the ferromagnetic
transition temperature. The clusters grow with decreasing temperature down to a
temperature T(f0) at which they freeze due to severe intercluster frustration.
The formation of these clusters is explained by the presence of yttrium induced
local structural distortions that create localized spin disorder in a magnetic
lattice where double-exchange ferromagnetism is dominant.Comment: Accepted for publication in Phys. Rev.
Interesting magnetic properties of FeCoSi alloys
Solid solution between nonmagnetic narrow gap semiconductor FeSi and
diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with
long-range helical magnetic ordering, for a wide range of intermediate
concentration. We report various interesting magnetic properties of these
alloys, including low temperature re-entrant spin-glass like behaviour and a
novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya
interaction in the magnetic response of these non-centrosymmetric alloys is
discussed.Comment: 11 pages and 3 figure
Dynamic scaling and aging phenomena in short-range Ising spin glass: CuCoCl-FeCl graphite bi-intercalation compound
Static and dynamic behavior of short-range Ising-spin glass
CuCoCl-FeCl graphite bi-intercalation compounds
(GBIC) has been studied with SQUID DC and AC magnetic susceptibility. The
dependence of the zero-field relaxation time above a spin-freezing
temperature (= 3.92 0.11 K) is well described by critical slowing
down. The absorption below decreases with
increasing angular frequency , which is in contrast to the case of 3D
Ising spin glass. The dynamic freezing temperature at which
dd, is determined as a function of
frequency (0.01 Hz 1 kHz) and magnetic field (0 5 kOe). The dynamic scaling analysis of the relaxation time
defined as at suggests the absence of
SG phase in the presence of (at least above 100 Oe). Dynamic scaling
analysis of and near
leads to the critical exponents ( = 0.36 0.03, = 3.5
0.4, = 1.4 0.2, = 6.6 1.2, = 0.24
0.02, and = 0.13 0.02). The aging phenomenon is studied through
the absorption below . It obeys a
power-law decay with an exponent . The rejuvenation effect is also observed under
sufficiently large (temperature and magnetic-field) perturbations.Comment: 14 pages, 19 figures; to be published in Phys. Rev. B (September 1,
2003
- …