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We discuss the origin of stretched exponential relaxation in disordered Ising spin systems by writing
the master equation on the phase space, and the evolution of local and global spin autocorrelation
functions, in terms of independent relaxation modes, which are eigenvectors of the time evolution
operator. In this sense it is shown that when the relaxation modes are spatially delocalized, both
local and global autocorrelation functions may present non-exponential relaxation. We also analyze
results for random walks on the dilute hypercube, which may be associated with the phase space of a
disordered Ising spin system. As expected, the results show a stretched exponential relaxation near
the percolation transition, since it deals with random walks on a fractal percolating cluster de�ned
on a closed surface. We argue that the same type of topology is present in the available region of
con�guration space in Ising spin-glass systems near the glass transition, since these systems present
very similar relaxation patterns in this temperature range.

I Introduction

Slow relaxation near a phase transition presents many
interesting features that re
ect the nature of the tran-
sition. This phenomenon may be observed in many
di�erent kinds of materials, ranging from the original
observations by Kohlrausch for the decay of residual
charge on a Leiden jar [1], to such theoretical models
as the trap model [2, 3], or random walkers on dilute
hypercubes of high dimensions [4-8], and spin glasses
above, or ferromagnets below their transition tempera-
tures, structural glasses, etc. [For a recent review, see
Ref. [9]].

There is a controversy that begins with the form of
the relaxation, and intensi�es when the discussion turns
to the possible origins for this behavior. Two di�erent
forms of non-exponential relaxation of a memory func-
tion q(t) are often found in the literature, originating
either in theoretical models or invoked in analysis of
experimental data. The �rst is

q(t) � exp [�c( ln t )
d

(d�1) ]; (1)

as proposed by Randeria et al. [10] for short-range Ising
spin-glasses with local spin dynamics above the spin-
glass transition temperature, but this asymptotic form

has never been observed [11]. The point is that systems
should relax for very long times to reach the asymptotic
regime, rendering diÆcult a conclusive statement based
on numerical simulations.

The second form of non-exponential relaxation of
memory functions is typically given by a stretched ex-
ponential of the form

q(t) � C exp [�(t=�)� ] (2)

where � is a relaxation time that diverges as the tran-
sition is approached and � < 1 (� = 1 is the case of a
pure exponential relaxation). This expression has been
found consistent with many experiments on disordered
systems [9] and numerical simulations of di�erent model
systems [2-8,12].

In this paper we address this controversy by con-
sidering the master equation representing the evolution
of a spin glass in phase space. In this manner, we can
write the evolving density function in terms of the relax-
ation modes related to the transition matrix eigenvec-
tors. The transition matrix contains information about
the dynamics of the system, giving the rate for the sys-
tem to pass from one con�guration to another. In sec-
tion II, we write the master equation for a general Ising
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spin system and discuss some of the previous theoret-
ical and numerical results from this point of view. In
section III, we write the master equation for random
walkers on a decimated hypercube, and use this model
as an analogy for the phase space a spin glass. In this
way the glass transition is associated with a percolation
transition and the slow relaxation is explained as the ex-
pected slowing down of dispersion of random walkers on
percolation clusters embedded on closed surfaces. The
results are presented and discussed in section IV and
�nally on section V we conclude.

II The master equation and re-

laxation modes

Two models have been proposed that may yield
stretched exponential relaxation in the appropriate lim-
its. The trap model [2] considers random walkers in
a d-dimensional space where traps are randomly dis-
tributed. The memory function here is given by the
number of living walkers after a given time. The ex-
pected lifetime of the walkers, that is, the average time
it takes for a walker to meet a trap, is determined by
the initial distance to the nearest trap. Consequently
the distribution of relaxation times contributing to the
memory function depends on the distribution of linear
sizes of trap-free regions. Also, each walker is relax-
ing in a given region, with a de�ned relaxation time,
that is, each walker is in an independent relaxing mode
of the dynamics of the system. The result of averag-
ing over these independent relaxation modes gives a
stretched exponential due to the particular form of the
relaxation-time distribution originating in the random
localization of traps.

Another theoretical model yielding stretched expo-
nential relaxation is the hierarchical model [3]. In this
model the spins are organized in di�erent hierarchical
levels, each level containing a given number of spins.
The spins in a given level are allowed to change states
only after some condition has been satis�ed by the spins
at the level immediately below. As a consequence,
the relaxation times are always increasing for increas-
ing levels, since superior levels spins must wait for the
spins at lower levels to relax before they can start relax-
ing. Each spin level then can be viewed as an indepen-
dent mode with a de�ned relaxation time. The memory
function is the spin autocorrelation function and each
spin relaxation is essentially ruled by only one indepen-
dent mode. The authors of this model propose a spe-
ci�c constraint on the evolution of upper levels yields
stretched exponential relaxation for the global memory
function.

The key issue in both models presented above is the
fact that the (global) memory function is an average
over local memory functions that relax exponentially
with di�erent relaxation times. In other words, the lo-

cal memory functions are measuring the evolution of
independent relaxation modes of the system. We can
verify this statement by considering a system with N
Ising spins, in which the monitored global memory func-
tion is given as

q(t) =
1

N

NX
i=1

Si(t)Si(0) (3)

and then writing a master equation, de�ned over the
phase space of the system as

@�(~S; t)

@t
=
X
f ~S0g

h
Q(~S; ~S0)�(~S0; t)�Q(~S0; ~S)�(~S; t)

i
(4)

where Q(~S0; ~S) is the transition rate from con�gura-

tion ~S to con�guration ~S0 and �(~S; t) is the probability

of �nding the system in the con�guration ~S at time
t. The transition matrix contains information about
the dynamics of the system and is di�erent for di�er-
ent models. It is convenient to express the dynamics in
a Dirac-like notation. Writing the above equation for
discrete time, the state of the system can be formally
obtained as

j�(t)i = e��tj�(t = 0)i (5)

where j�(t)i represents the probability of �nding the
system in each possible con�guration at time t, and �
is given by

�(~S; ~S0) = Q(~S; ~S0)� Æ(~S � ~S0)
X
f ~S�g

Q( ~S�; ~S) (6)

The eigenvalue equation of the transition matrix � is

�j�ki = �kj�ki (7)

where k = 1; 2; :::; 2N and the eigenvectors fj�kig form
a basis for the space of the solutions of the evolution
equation. One can also build another basis, considering
the states j~Si that represent a state where we have prob-

ability one of �nding the system in ~S = (S1; S2; :::; SN )
and zero in any other con�guration. In this case,

h~Sj ~S0i = Æ(~S � ~S0) (8)

and �(~S; t) = h~Sj ~�(t)i. The stationary solution(s) of
Eq.(4) are the eigenstate(s) of Eq.(7) with eigenvalue
zero, normalized such thatX

f~Sg

h~Sj� = 0i = 1 (9)

while for all other eigenstates, with Re(�) < 0, the
above sum gives zero. It means that some of the com-
ponents h~Sj� 6= 0i are less than zero. This has two main
implications: (i) all physical con�gurations may be rep-
resented by a linear combination of the eigenstates of
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the evolution operator provided it contains a station-

ary component such that all components h~Sj ~�(t)i of
the physical state are non-negative and (ii) the role
played by these non stationary components, in relation
to the stationary states, is to add probability to some
con�gurations while subtracting probability from other
con�gurations, conserving total probability. These two
features are valid due to the probability conservation
guaranteed by the evolution equation. The state of the
system at time t may then be written as

j�(t)i =
2
NX

k=1

e�ktj�kih�k j�(t = 0)i (10)

where it becomes clear that the eigenvalues of the tran-
sition matrix give the relaxation modes of the system.
Letting �k = �1=�k, the above equation becomes

j�(t)i =

2
NX

k=1

e�t=�k j�kih�k j�(t = 0)i : (11)

Now, Eq.(11) gives the relaxation of the system as a
whole in terms of its independent modes. The question
now is to translate this relaxation of the probability
density of the system de�ned over its phase space into
the relaxation of the spin autocorrelation function that
is the commonly used memory function for Ising spin
systems. For that we �rst take

j�(t = 0)i = j ~S0i (12)

where ~S0 is the initial con�guration of the system. We
then take the product of Eq.(11) with h~Sj, multiply by
Si and S0i , that are the values of the i-th spin in con-

�gurations ~S and ~S0, respectively, and average over all
con�gurations, to obtain the local spin autocorrelation
function:

qi(t) =

2
NX

k=1

e�t=�kfi(�k ; ~S0) (13)

with
fi(�k ; ~S0) =

X
f~Sg

SiS
0

i h~Sj�kih�k j
~S0i (14)

Finally, the global spin autocorrelation function
may be written as

q(t) =

2
NX

k=1

e�t=�kg(�k; ~S0) (15)

with

g(�k; ~S0) =
X
f~Sg

 
1

N

NX
i=1

SiS
0

i

!
h~Sj�kih�k j ~S0i

=
1

N

NX
i=1

fi(�k; ~S0) (16)

Both equations present a stationary part, correspond-
ing to �i =1 (�i = 0) and a relaxation part related to
smaller relaxation times (�i < 0).

Now, considering the relaxing component for the hi-
erarchical model, which is a spin system so that the
above memory function applies, we observe that essen-
tially each spin relaxes according to its level indepen-
dent mode, that is, the sum over di�erent relaxation
modes k splits into sums for di�erent levels. Conse-
quently, each spin is expected to relax exponentially,
but the sum over individual spin relaxation functions
may yield a stretched exponential form for suitable con-
straints.

In more general spin systems, it has been argued
that some unfrustrated spin clusters may form, such
that the relaxation within a given cluster is exponential,
with relaxation times de�ned by the cluster size. The
sum of these di�erent modes of exponential relaxation
with an appropriate cluster size distribution could yield
a global stretched exponential behavior. These clus-
ters would be related to the GriÆths singularities[13],
and hence spatial inhomogeneities would be responsi-
ble for the observed slow relaxation. However, this
model implies that each spin should relax exponentially
(each cluster corresponding to an independent relax-
ation mode), and spatial correlation between local spin
relaxation modes would signal the appearance of un-
frustrated clusters. Glotzer et al.[12] monitored the re-
laxation of two and three dimensional Ising spin glasses
and found stretched exponential relaxation for individ-
ual spins, that is, the sum in the expression for the local
autocorrelation function qi(t) in Eq.(13) also yields a
stretched exponential, implying that various relaxation
modes contribute to the relaxation of individual spins.

In fact, it is the structure of g(�k; ~S0) and fi(�k ; ~S0) that
governs the contribution of each relaxation mode for
the global and local spin correlation functions, de�ning
their overall relaxation behavior. For example, if the re-
laxation modes are not spatially localized, q(t) could in
principle present stretched exponential relaxation with
a given � and �, and so could the local relaxation func-
tions with di�erent values for these parameters. Di�er-
ent values of � and � have indeed been found Glotzer
et al. [12].

III Ising spin systems and the

hypercube

From Eq.(4) and the evolution equations for the spin
autocorrelation function, it becomes clear that it is in-
teresting to investigate the origins of non-exponential
relaxation by focusing on the phase space of the system.
In fact, the phase space of a system with N Ising spins
is the set of the vertices of a hypercube of N dimen-
sions. Now, adding to this the fact that random walkers
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on percolation clusters embedded on 
at spaces yield a
sublinear di�usion equation hr2i � t� [14], while ran-
dom walkers on closed surfaces such as a hypersphere
give a pure exponential decay of the average autocorre-
lation function, hcos(�(t))i � exp(�t=�), one is led to
the conjecture proposed by Campbell [4] that dispersion
of random walkers on percolation clusters embedded in
a closed surface such as the hypercube should follow
hr2i � exp[�(t=�)� ], with � ! 1=3 and � ! 1 as the
percolation threshold is approached.

In recent simulations of a percolation cluster embed-
ded in the surface of a hypersphere, Jund, Jullien and
Campbell [15] show that stretched exponential relax-
ation is directly connected to the fractal nature of these
clusters. Campbell's conjecture goes further, by consid-
ering the implications of these results to the relaxation
of such disordered systems as, for example, Ising spin
glasses. The idea is to regard the relaxation of an Ising
spin glass coupled to a heat bath as a random walk
through the available states in phase space. This high-
dimensional, closed space has its landscape changed as
the temperature approaches the transition from above,
since the number of available states decreases in this
process.

Near the transition it is conjectured that the set of
available states forms a percolating cluster, and that
right at the transition point the giant cluster breaks
into many �nite clusters, representing the many di�er-
ent free energy valleys typical of spin glasses below the
glass transition temperature. As temperature is low-
ered towards the transition, the topology of the clus-
ter becomes more labyrinthine, slowing down the re-
laxation towards equilibrium. Observe that this pic-
ture considers the relaxation of a density function on
the hypercube where each site is a possible con�gura-
tion of the system. As the di�erent vertices change
their occupation density, the local and global spin au-
tocorrelation functions change accordingly, and it may
be possible that they are simultaneously in
uenced by
many di�erent relaxation modes.

The simplest case of the above scenario has been
considered by Campbell and collaborators [4-7] through
Monte Carlo simulations of a random walker on an N -
dimensional hypercube in which some of the vertices
have been deleted or prohibited to the walker. There
is a critical fraction pc of allowed or occupied vertices
below which no percolation cluster is formed. The sim-
ulations, which were performed for occupation fractions
p � pc, monitored the average Hamming distance q(t)
between the current and initial positions of the walker
as a function of time, which can be associated with the
global spin autocorrelation function. The results are
compatible with Campbell's conjecture, but the noise
at small values of q(t) for long times did not allow a
decisive conclusion. An alternative procedure is to con-
sider the evolution of the probability density of �nding
a walker at given vertex by directly iterating the mas-

ter equation of the system [8], which has yielded very
precise results.

Start by imagining a hypercube in (high) dimension
N with a fraction p of its 2N vertices occupied at ran-
dom. The critical percolation concentration is given by

pc = �+
3

2
�2 +

15

14
�3 + : : : (17)

where � = 1=(N � 1). For p > pc there exists a gi-
ant spanning cluster made up of occupied sites hav-
ing one or more occupied sites as neighbors [16]. For
p < pc there are only small clusters (with less than N
elements).

Considering each con�guration ~S as the binary rep-
resentation of an integer �, the density function �(~S; t)
becomes then a function of two integer variables, �(�; t),
and the direct iteration of the master equation may eas-
ily be implemented on a computer. Considering values
of p above pc, the system starts at a given vertex �0 be-
longing to the in�nite cluster. The probability that the
random walker jumps to a neighboring site is 1=N if it is
`occupied' and zero otherwise, in which case the walker
stays where it is. The discrete-time master equation
then reads

�(�; t+ 1) = �(�; t)+X
f�0g

[W (�; �0)�(�0; t)�W (�0; �)�(�; t)] (18)

with transition matrix W (�0; �) conveniently rede�ned
to describe the jumping probabilities during discrete
time intervals.

As the iteration procedure evolves we monitor the
memory function of the system, the spin auto correla-
tion function, calculated as

q(t) =
1

N

NX
i=1

X
f�g

�(�; t)S0i Si ; (19)

where S0i and Si are the i-th spins of the con�gurations
associated, respectively, with �0 and �, that is

S0i =
(2i�1 AND �0)

2i�2
� 1

Si =
(2i�1 AND �)

2i�2
� 1 : (20)

The advantage of this procedure is that for each
transition matrix, representing one realization of a hy-
percube with occupation probability p, successive iter-
ations of the master equation provide the average over
all possible random walks starting from the same ini-
tial condition. Averages over di�erent samples are still
required, but the accuracy is signi�cantly enhanced in
comparison to Monte Carlo calculations.

Very near pc the direct iteration of the master equa-
tion becomes too slow and a second method may be
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applied. In this case, we take advantage of the reduced
number of sites in the percolating cluster and diagonal-
ize the evolution operator, obtain the eigenvalues and
eigenvectors and use them directly in Eq.(15).

As the occupation probability p decreases from 1.0
down to the percolation threshold, the occupied ver-
tices develop a fractal percolation cluster: the vector

state ~�(t) di�uses on a fractal aggregate. In this case,
we may expect anomalous di�usion. We therefore study
the relaxation of the autocorrelation for di�erent values
of p, above the percolation threshold.

IV Results

For each p studied, we considered 100 realizations of
the hypercube. Since we explicitly solve the master
equation for this system we obtain exact results (to
within numerical rounding errors) for the average over
all possible random walks for each combination of a re-
alization of the hypercube and one given starting point.
Therefore by studying even a relatively small number of
samples we can obtain very good estimates for the av-
erage relaxation function q(t). The main problem with
this approach is that even with the optimization used,
cpu time and memory restricted us to \low" dimensions
N , since the number of vertices in the phase space in-
creases exponentially with N (� 2N). For convenience
we chose to carry out explicit calculations in dimension
N = 16. 100 samples were studied for each value of
p : p=0.073, 0.10, 0.24, 0.36 and 0.5, while 500 sam-
ples were studied for p = 0:12. For p=0.073, very near
the percolation threshold for N = 16, we diagonalized
the evolution operator, while for the other values the
dynamical equation was directly iterated.

Before discussing the results, it is interesting to
point out that we expect three relaxation regimes: i)
At short times q(t) will behave as 1 � �t where � is
the average probability per unit time that a step will
be taken, i.e., it is proportional to the fraction of occu-
pied neighbors of a site on the giant cluster. This is the
leading term in the exponential function exp(�(�t)), so
at very short times the relaxation will always be expo-
nential. ii). At longer times, as the system explores the
labyrinthine geometry of the giant cluster, a slow relax-
ation regime appears. iii) Finally, at even longer times,
�nite-size e�ects become measurable and a crossover
back to an exponential relaxation is expected to set in.
This last crossover time has been shown to depend on
sample size for systems where relaxation arises from
two competing exponential processes [17].

The results for q(t) are presented in two di�erent
ways to verify whether the relaxation is following a
stretched exponential form and then obtain the �tting
parameters. Fig. 1 shows the data obtained for q(t) in
a log-log plot for di�erent values of p, together with the
stretched exponential �ts with �(p) and �(p) as given

in Fig. 2. The normalization parameter C is always
close to 1. It can be seen immediately that the �ts are
of excellent quality.

Figure 1. Decay of the autocorrelation function q(t) on a
log-log plot for di�erent values of p, as listed in the inset.
The solid lines correspond to stretched exponential �ts, with
�(p) and �(p) as indicated in Fig. (2). The error bars cor-
respond to an estimate of the uncertainty of the points due
to limited sampling.

In a more stringent test for the stretched exponen-
tial �t, Fig. 3 shows the same data as before but now
in a log(-log(q(t))) versus log(t) plot. In this kind of
plots pure or stretched exponential functions appears
as straight lines, with the slope giving the exponent
�. As expected, all curves show deviations towards a
pure exponential behavior for very short and very long
times. At intermediate times, however, the stretched
exponential behavior is clearly marked by the extended
straight line regions. Also, both Figs. (2) and (3) show
that as p! pc � ! 1=3 and � !1.

Figure 2. Relaxation time � (p) (circles) and stretched ex-
ponential exponent �(p) (squares) against p. As p! pc, �
diverges while �(p) approaches 1=3.
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Figure 3. A more stringent test of the stretched exponential
behavior of q(t) is the log [-log(q(t)) ] against log t plot. The
di�erent values of p are listed in the inset. The solid lines
correspond to a stretched exponential �t, with � and � as
indicated in Fig.(2).

Finally, Fig. 4 shows the value of the local slope of
q(t) in the log(-log(q(t))) versus log(t) plot, that is, this
�gure presents the instantaneous value of the exponent
�. The three regimes (exponential - stretched expo-
nential - exponential) may clearly be spotted, with the
minimum value for the instant value of � approaching
1/3 as the transition is approached.

Figure 4. The instantaneous �(t) versus log(t). For a perfect
stretched exponential behavior the curves should be hori-
zontal lines. The curves show that as we approach pc the
plateaus get larger.

In summary, solutions of the master equation
strongly con�rm earlier numerical work on random
walkers on the hypercube, but to much higher preci-
sion [4-7].

V Conclusions

The question may be raised as to whether the stretched
exponential is the true limiting long time relaxation
form in spin glasses. It has been stated that the long

time relaxation should be dominated by large, compact,
non-frustrated, isolated clusters of spins for tempera-
tures below the GriÆths transition[10, 18, 19], but no
numerical evidence has ever been found for the onset of
this regime [18, 20, 21]. The probability of encountering
large unfrustrated clusters in samples of the sizes stud-
ied numerically can be estimated and is microscopically
small; thus any cluster- dominated regime would corre-
spond to tiny values of q(t) in huge samples, and so is
unattainable in practice for numerical or experimental
studies.

In systems with quenched-in disorder such as spin
glasses, simulations show that there is some spatial het-
erogeneity of relaxation times, but that the relaxation
of individual spins is generally strongly non-exponential
[11, 12], in agreement with the fact that for each spin
many di�erent modes may be contributing to its relax-
ation, and di�erent linear combinations of relaxation
modes are established for di�erent spins, depending on
initial conditions and on the spatial delocalization of
modes, as shown by the expression for the structure

functions fi(�i; ~S0) in Eq.(14). In this sense, local re-
laxation rates are expected to be heterogeneous and it
may well happen that di�erent sites exhibit the most
rapid relaxation at di�erent times. In spin-glass sys-
tems, where the probability of large unfrustrated re-
gions is very small, the independent relaxing modes
should not be expected to be localized, in contrast to
systems where there are either independent relaxing
clusters or independent hierarchical levels. Hence, in
the presence of some quenched-in static inhomogeneity,
heterogeneity can be expected to be mainly dynamic
and the argument for an overall fractal phase space
topology leading to the stretched exponential global re-
laxation is not a�ected.

In conclusion, using a master equation approach
for random walks on the dilute hypercube, high pre-
cision results have been obtained compatible with the
stretched exponential being the exact functional form
for the decay in the limit of in�nitely high dimension.
Heterogeneities in local relaxation forms naturally ap-
pear when the autocorrelation functions are written
in terms of the independent modes of relaxation of
the density function de�ned on the hypercube. The
stretched exponential appears as a consequence of frac-
tality in a closed space, both for global and local re-
laxation functions: the sum over simple exponentials
yielding a stretched exponential is then also valid for
the local autocorrelation functions when the indepen-
dent relaxation modes are not spatially localized. The
resemblance between the dilute hypercube relaxation
pattern and the relaxation actually observed in numer-
ical studies of spin glasses or experiments on glasses
above the freezing temperature strongly suggests that
in physical systems the independent relaxation modes
for the density function are not spatially localized and
that the available region of the phase space may present
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a fractal structure in this temperature range. For
sums such as those in Eqs.(13) and (15) to give rise
to stretched exponentials, the weight of each di�erent
relaxation time component must have some character-
istics such that, for example, a steepest-descent calcu-
lation of these sums yields a stretched exponential. As
a stretched exponential appears for the hypercube near
the percolation threshold, as indeed it is expected for
random walkers over percolation clusters embedded on
closed surfaces, we argue that the same type of topology
should be present in the available region of Ising sys-
tems phase space near the glass transition, since these
systems also present very similar patterns of relaxation
in this temperature range.
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