63 research outputs found

    Is Evolution of Blind Mole Rats Determined by Climate Oscillations?

    Get PDF
    The concept of climate variability facilitating adaptive radiation supported by the ‘‘Court Jester’’ hypothesis is disputed by the ‘‘Red Queen’’ one, but the prevalence of one or the other might be scale-dependent. We report on a detailed, comprehensive phylo-geographic study on the ,4 kb mtDNA sequence in underground blind mole rats of the family Spalacidae (or subfamily Spalacinae) from the East Mediterranean steppes. Our study aimed at testing the presence of periodicities in branching patterns on a constructed phylogenetic tree and at searching for congruence between branching events, tectonic history and paleoclimates. In contrast to the strong support for the majority of the branching events on the tree, the absence of support in a few instances indicates that network-like evolution could exist in spalacids. In our tree, robust support was given, in concordance with paleontological data, for the separation of spalacids from muroid rodents during the first half of the Miocene when open, grass-dominated habitats were established. Marine barriers formed between Anatolia and the Balkans could have facilitated the separation of the lineage ‘‘Spalax’’ from the lineage ‘‘Nannospalax’’ and of the clade ‘‘leucodon’’ from the clade ‘‘xanthodon’’. The separation of the clade ‘‘ehrenbergi’’ occurred during the late stages of the tectonically induced uplift of the Anatolian high plateaus and mountains, whereas the separation of the clade ‘‘vasvarii’’ took place when the rapidly uplifting Taurus mountain range prevented the Mediterranean rainfalls from reaching the Central Anatolian Plateau. The separation of Spalax antiquus and S. graecus occurred when the southeastern Carpathians were uplifted. Despite the role played by tectonic events, branching events that show periodicity corresponding to 400-kyr and 100-kyr eccentricity bands illuminate the important role of orbital fluctuations on adaptive radiation in spalacids. At the given scale, our results supports the ‘‘Court Jester’’ hypothesis over the ‘‘Red Queen’’ one

    C4 photosynthesis promoted species diversification during the Miocene grassland expansion.

    Get PDF
    Identifying how organismal attributes and environmental change affect lineage diversification is essential to our understanding of biodiversity. With the largest phylogeny yet compiled for grasses, we present an example of a key physiological innovation that promoted high diversification rates. C4 photosynthesis, a complex suite of traits that improves photosynthetic efficiency under conditions of drought, high temperatures, and low atmospheric CO2, has evolved repeatedly in one lineage of grasses and was consistently associated with elevated diversification rates. In most cases there was a significant lag time between the origin of the pathway and subsequent radiations, suggesting that the 'C4 effect' is complex and derives from the interplay of the C4 syndrome with other factors. We also identified comparable radiations occurring during the same time period in C3 Pooid grasses, a diverse, cold-adapted grassland lineage that has never evolved C4 photosynthesis. The mid to late Miocene was an especially important period of both C3 and C4 grass diversification, coincident with the global development of extensive, open biomes in both warm and cool climates. As is likely true for most "key innovations", the C4 effect is context dependent and only relevant within a particular organismal background and when particular ecological opportunities became available

    Abrasive, Silica Phytoliths and the Evolution of Thick Molar Enamel in Primates, with Implications for the Diet of Paranthropus boisei

    Get PDF
    Background: Primates—including fossil species of apes and hominins—show variation in their degree of molar enamel thickness, a trait long thought to reflect a diet of hard or tough foods. The early hominins demonstrated molar enamel thickness of moderate to extreme degrees, which suggested to most researchers that they ate hard foods obtained on or near the ground, such as nuts, seeds, tubers, and roots. We propose an alternative hypothesis—that the amount of phytoliths in foods correlates with the evolution of thick molar enamel in primates, although this effect is constrained by a species ’ degree of folivory. Methodology/Principal Findings: From a combination of dietary data and evidence for the levels of phytoliths in plant families in the literature, we calculated the percentage of plant foods rich in phytoliths in the diets of twelve extant primates with wide variation in their molar enamel thickness. Additional dietary data from the literature provided the percentage of each primate’s diet made up of plants and of leaves. A statistical analysis of these variables showed that the amount of abrasive silica phytoliths in the diets of our sample primates correlated positively with the thickness of their molar enamel, constrained by the amount of leaves in their diet (R 2 = 0.875; p,.0006). Conclusions/Significance: The need to resist abrasion from phytoliths appears to be a key selective force behind the evolution of thick molar enamel in primates. The extreme molar enamel thickness of the teeth of the East African homini

    Poaceae pollen grain size as a tool to distinguish past grasslands in South America: a new methodological approach

    Full text link
    Despite the dominance of grasslands during the last glacial period, especially in South America, the highly uniform morphology of Poaceae pollen grains has so far allowed only very few palynological studies based on Poaceae pollen. In our study we compare two methods of distinguishing between South American grassland ecosystems based on quantitative morphology of Poaceae pollen grains. We investigated data sets from Paramo in southern Ecuador, Campos de Altitude and Campos in south-eastern and southern Brazil as well as data sets from the Pampa in Argentina by measuring the pollen grain length, grain width, pore diameter and annulus width. Firstly we investigated the potential influence of chemical treatment of pollen grains on pollen grain size as well as the measurement setting for defining the boundary conditions for using Poaceae pollen grains in a palaeoecological investigation. Finally the measured pollen grain parameters were analyzed by comparison of average grain length using statistical tests. This approach reveals highly significant differences in average grain size between all grassland ecosystems. Assuming that a certain grain size range can be assigned to a certain Poaceae taxon, conclusions about differences and similarities in taxa composition can be derived. We used two methods of multivariate data analysis. One uses the pollen grain parameters directly for a Principle Component Analysis (PCA). The other is an already established method in grassland ecology which defines parameter based pollen grain types to investigate similarities between grassland ecosystems. Both approaches confirm the results of the grain length analysis. In this work we demonstrate that the method we developed has the potential to provide acquisition of so far inaccessible information on spatial and temporal patterns and dynamics of South American grasslands

    An improved approach to age-modeling in deep time: Implications for the Santa Cruz Formation, Argentina

    No full text
    © 2019 Geological Society of America. Accurate age-depth models for proxy records are crucial for inferring changes to the environment through space and time, yet traditional methods of constructing these models assume unrealistically small age uncertainties and do not account for many geologic complexities. Here we modify an existing Bayesian age-depth model to foster its application for deep time U-Pb and 40Ar/39Ar geochronology. More flexible input likelihood functions and use of an adaptive proposal algorithm in the Markov Chain Monte Carlo engine better account for the age variability often observed in magmatic crystal populations, whose dispersion can reflect inheritance, crystal residence times and daughter isotope loss. We illustrate this approach by calculating an age-depth model with a contiguous and realistic uncertainty envelope for the Miocene Santa Cruz Formation (early Miocene; Burdigalian), Argentina. The model is calibrated using new, high-precision isotope dilution U-Pb zircon ages for stratigraphically located interbedded tuffs, whose weighted mean ages range from ca. 16.78 ± 0.03 Ma to 17.62 ± 0.03 Ma. We document how the Bayesian age-depth model objectively reallocates probability across the posterior ages of dated horizons, and thus produces better estimates of relative ages among strata and variations in sedimentation rate. We also present a simple method to propagate age-depth model uncertainties onto stratigraphic proxy data using a Monte Carlo technique. This approach allows us to estimate robust uncertainties on isotope composition through time, important for comparisons of terrestrial systems to other proxy records
    corecore