40 research outputs found

    Targeted Inactivation of Cerberus Like-2 Leads to Left Ventricular Cardiac Hyperplasia and Systolic Dysfunction in the Mouse

    Get PDF
    Previous analysis of the Cerberus like 2 knockout (Cerl2(-/-)) mouse revealed a significant mortality during the first day after birth, mostly due to cardiac defects apparently associated with randomization of the left-right axis. We have however, identified Cerl2-associated cardiac defects, particularly a large increase in the left ventricular myocardial wall in neonates that cannot be explained by laterality abnormalities. Therefore, in order to access the endogenous role of Cerl2 in cardiogenesis, we analyzed the embryonic and neonatal hearts of Cerl2 null mutants that did not display a laterality phenotype. Neonatal mutants obtained from the compound mouse line Cer2(-/-)Fundacao para a Ciencia e Tecnologia (FCT); IBB/CBME [PEst-OE/EQB/LA0023/2011]; FCT [SFRH/BD/62081/2009]info:eu-repo/semantics/publishedVersio

    Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's Sarcoma Herpes Virus

    Get PDF
    Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe

    Characterisation of the human embryonic and foetal epicardium during heart development

    No full text
    The epicardium is essential for mammalian heart development. At present, our understanding of the timing and morphogenetic events leading to the formation of the human epicardium has essentially been extrapolated from model organisms. Here, we studied primary tissue samples to characterise human epicardium development. We reveal that the epicardium begins to envelop the myocardial surface at Carnegie stage (CS) 11 and this process is completed by CS15, earlier than previously inferred from avian studies. Contrary to prevailing dogma, the formed human epicardium is not a simple squamous epithelium and we reveal evidence of more complex structure, including novel spatial differences aligned to the developing chambers. Specifically, the ventricular, but not atrial, epicardium exhibited areas of expanded epithelium, preferential cell alignment and spindle-like morphology. Likewise, we reveal distinct properties ex vivo, such that ventricular cells spontaneously differentiate and lose epicardial identity, whereas atrial-derived cells remained ‘epithelial-like’. These data provide insight into the developing human epicardium that may contribute to our understanding of congenital heart disease and have implications for the development of strategies for endogenous cell-based cardiac repair

    Hand1 regulates cardiomyocyte proliferation versus differentiation in the developing heart.

    No full text
    The precise origins of myocardial progenitors and their subsequent contribution to the developing heart has been an area of considerable activity within the field of cardiovascular biology. How these progenitors are regulated and what signals are responsible for their development are, however, much less well understood. Clearly, not only is there a need to identify factors that regulate the transition from proliferation of cardioblasts to differentiation of cardiac muscle, but it is also necessary to identify factors that maintain an adequate pool of undifferentiated myocyte precursors as a prerequisite to preventing organ hypoplasia and congenital heart disease. Here, we report how upregulation of the basic helix-loop-helix (bHLH) transcription factor Hand1, restricted exclusively to Hand1-expressing cells, brings about a significant extension of the heart tube and extraneous looping caused by the elevated proliferation of cardioblasts in the distal outflow tract. This activity is independent of the further recruitment of extracardiac cells from the secondary heart field and permissive for the continued differentiation of adjacent myocardium. Culture studies using embryonic stem (ES) cell-derived cardiomyocytes revealed that, in a Hand1-null background, there is significantly elevated cardiomyocyte differentiation, with an apparent default mesoderm pathway to a cardiomyocyte fate. However, Hand1 gain of function maintains proliferating precursors resulting in delayed and significantly reduced cardiomyocyte differentiation that is mediated by the prevention of cell-cycle exit, by G1 progression and by increased cell division. Thus, this work identifies Hand1 as a crucial cardiac regulatory protein that controls the balance between proliferation and differentiation in the developing heart, and fills a significant gap in our understanding of how the myocardium of the embryonic heart is established

    Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium.

    No full text
    Ischemic heart disease leading to myocardial infarction causes irreversible cell loss and scarring and is a major cause of morbidity and mortality in humans. Significant effort in the field of cardiovascular medicine has been invested in the search for adult cardiac progenitor cells that may replace damaged muscle cells and/or contribute to new vessel formation (neovascularization) and in the identification of key factors, which may induce such progenitor cells to contribute to myocardial repair and collateral vessel growth. We recently demonstrated that the actin monomer-binding protein, thymosin beta-4 (Tbeta-4), when secreted from the myocardium provides a paracrine stimulus to the cells of the epicardium-derived cells (EPDCs) to promote their inward migration and differentiation into endothelial and smooth muscle cells to form the coronary vasculature. Translating this essential role for Tbeta-4 in coronary vessel development to the adult, we found that treatment of cultured adult explants with Tbeta-4 stimulated extensive outgrowth of epicardin-positive epicardial cells, which, as they migrated away from the explant, differentiated into procollagen type I, SMalphaA, and Flk1-positive cells indicative of fibroblasts, smooth muscle, and endothelial cells; thus releasing the adult epicardium from a quiescent state and restoring pluripotency. The ability of Tbeta-4 to promote coronary vessel development and potentially induce new vasculature in the adult is essential for cardiomyocyte survival and could contribute significantly toward the reported Tbeta4-induced cardioprotection and repair in the adult heart. Tbeta-4 is currently subject to multicenter phase 1 clinical trials for treatment of cardiovascular disease (http://www.regenerx.com), therefore, insight into the repair mechanism(s) induced by Tbeta-4 is an essential step toward harnessing therapeutic survival, migration, and repair properties of the peptide in the context of acute myocardial damage

    Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization.

    No full text
    Cardiac failure has a principal underlying aetiology of ischaemic damage arising from vascular insufficiency. Molecules that regulate collateral growth in the ischaemic heart also regulate coronary vasculature formation during embryogenesis. Here we identify thymosin beta4 (Tbeta4) as essential for all aspects of coronary vessel development in mice, and demonstrate that Tbeta4 stimulates significant outgrowth from quiescent adult epicardial explants, restoring pluripotency and triggering differentiation of fibroblasts, smooth muscle cells and endothelial cells. Tbeta4 knockdown in the heart is accompanied by significant reduction in the pro-angiogenic cleavage product N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). Although injection of AcSDKP was unable to rescue Tbeta4 mutant hearts, it significantly enhanced endothelial cell differentiation from adult epicardially derived precursor cells. This study identifies Tbeta4 and AcSDKP as potent stimulators of coronary vasculogenesis and angiogenesis, and reveals Tbeta4-induced adult epicardial cells as a viable source of vascular progenitors for continued renewal of regressed vessels at low basal level or sustained neovascularization following cardiac injury

    Nucleolar release of Hand1 acts as a molecular switch to determine cell fate.

    No full text
    The bHLH transcription factor Hand1 is essential for placentation and cardiac morphogenesis in the developing embryo. Here we implicate Hand1 as a molecular switch that determines whether a trophoblast stem cell continues to proliferate or commits to differentiation. We identify a novel interaction of Hand1 with a protein that contains an I-mfa (inhibitor of myogenic factor) domain that anchors Hand1 in the nucleolus where it negatively regulates Hand1 activity. In the trophoblast stem-cell line Rcho-1, nucleolar sequestration of Hand1 accompanies sustained cell proliferation and renewal, whereas release of Hand1 into the nucleus leads to its activation, thus committing cells to a differentiated giant-cell fate. Site-specific phosphorylation is required for nucleolar release of Hand1, for its dimerization and biological function, and this is mediated by the non-canonical polo-like kinase Plk4 (Sak). Sak is co-expressed in Rcho-1 cells, localizes to the nucleolus during G2 and phosphorylates Hand1 as a requirement for trophoblast stem-cell commitment to a giant-cell fate. This study defines a novel cellular mechanism for regulating Hand1 that is a crucial step in the stem-cell differentiation pathway

    Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy.

    No full text
    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease
    corecore