2,758 research outputs found

    On the Computational Complexity of Vertex Integrity and Component Order Connectivity

    Full text link
    The Weighted Vertex Integrity (wVI) problem takes as input an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to\mathbb{N}, and an integer pp. The task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX plus the weight of a heaviest component of GXG-X is at most pp. Among other results, we prove that: (1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 11; (2) wVI can be solved in O(pp+1n)O(p^{p+1}n) time; (3) wVI admits a kernel with at most p3p^3 vertices. Result (1) refutes a conjecture by Ray and Deogun and answers an open question by Ray et al. It also complements a result by Kratsch et al., stating that the unweighted version of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension, provided that an intersection model of the input graph is given as part of the input. An instance of the Weighted Component Order Connectivity (wCOC) problem consists of an nn-vertex graph GG, a weight function w:V(G)Nw:V(G)\to \mathbb{N}, and two integers kk and ll, and the task is to decide if there exists a set XV(G)X\subseteq V(G) such that the weight of XX is at most kk and the weight of a heaviest component of GXG-X is at most ll. In some sense, the wCOC problem can be seen as a refined version of the wVI problem. We prove, among other results, that: (4) wCOC can be solved in O(min{k,l}n3)O(\min\{k,l\}\cdot n^3) time on interval graphs, while the unweighted version can be solved in O(n2)O(n^2) time on this graph class; (5) wCOC is W[1]-hard on split graphs when parameterized by kk or by ll; (6) wCOC can be solved in 2O(klogl)n2^{O(k\log l)} n time; (7) wCOC admits a kernel with at most kl(k+l)+kkl(k+l)+k vertices. We also show that result (6) is essentially tight by proving that wCOC cannot be solved in 2o(klogl)nO(1)2^{o(k \log l)}n^{O(1)} time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the conference proceedings of ISAAC 201

    Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape

    Get PDF
    Background: Rhizoctonia solani (Kühn) is a soil-borne, necrotrophic fungus causing damping off, root rot and stem canker in many cultivated plants worldwide. Oilseed rape (OSR, Brassica napus) is the primary host for anastomosis group (AG) 2-1 of R. solani causing pre- and post-emergence damping-off resulting in death of seedlings and impaired crop establishment. Presently, there are no known resistant OSR genotypes and the main methods for disease control are fungicide seed treatments and cultural practices. The identification of sources of resistance for crop breeding is essential for sustainable management of the disease. However, a high-throughput, reliable screening method for resistance traits is required. The aim of this work was to develop a low cost, rapid screening method for disease phenotyping and identification of resistance traits. Results: Four growth systems were developed and tested: (1) nutrient media plates, (2) compost trays, (3) light expanded clay aggregate (LECA) trays, and (4) a hydroponic pouch and wick system. Seedlings were inoculated with virulent AG 2-1 to cause damping-off disease and grown for a period of 4–10 days. Visual disease assessments were carried out or disease was estimated through image analysis using ImageJ. Conclusion: Inoculation of LECA was the most suitable method for phenotyping disease caused by R. solani AG 2-1 as it enabled the detection of differences in disease severity among OSR genotypes within a short time period whilst allowing measurements to be conducted on whole plants. This system is expected to facilitate identification of resistant germplasm

    Radiating Shear-Free Gravitational Collapse with Charge

    Full text link
    We present a new shear free model for the gravitational collapse of a spherically symmetric charged body. We propose a dissipative contraction with radiation emitted outwards. The Einstein field equations, using the junction conditions and an ansatz, are integrated numerically. A check of the energy conditions is also performed. We obtain that the charge delays the black hole formation and it can even halt the collapse.Comment: 22 pages, 9 figures. It has been corrected several typos and included several references. Accepted for publication in GR

    The effect of incorrect scanning distance on boundary detection errors and macular thickness measurements by spectral domain optical coherence tomography: a cross sectional study

    Get PDF
    BACKGROUND: To investigate the influence of scan distance on retinal boundary detection errors (RBDEs) and retinal thickness measurements by spectral domain optical coherence tomography (SD-OCT). METHODS: 10 eyes of healthy subjects, 10 eyes with diabetic macular edema (DME) and 10 eyes with neovascular age-related macular degeneration (AMD) were examined with RTVue SD-OCT. The MM5 protocol was used in two consecutive sessions to scan the macula. For the first session, the device was set 3.5 cm from the eye in order to obtain detectable signal with low fundus image quality (suboptimal setting) while in the second session a distance of 2.5 cm was set with a good quality fundus image. The signal strength (SSI) value was recorded. The score for retinal boundary detection errors (RBDE) was calculated for ten scans of each examination. RBDE scores were recorded for the whole scan and also for the peripheral 1.0 mm region. RBDE scores, regional retinal thickness values and SSI values between the two sessions were compared. The correlation between SSI and the number of RBDEs was also examined. RESULTS: The SSI was significantly lower with suboptimal settings compared to optimal settings (63.9+/-12.0 vs. 68.3+/-12.2, respectively, p = 0.001) and the number of RBDEs was significantly higher with suboptimal settings in the "all-eyes" group along with the group of healthy subjects and eyes with DME (9.1+/-6.5 vs. 6.8+/-6.3, p = 0.007; 4.4+/-2.6 vs. 2.5+/-1.6, p = 0.035 and 9.7+/-3.3 vs. 5.1+/-3.7, p = 0.008, respectively). For these groups, significant negative correlation was found between the SSI and the number of RBDEs. In the AMD group, the number of RBDEs was markedly higher compared to the other groups and there was no difference in RBDEs between optimal and suboptimal settings with the errors being independent of the SSI. There were significantly less peripheral RBDEs with optimal settings in the "all-eyes" group and the DME subgroup (2.7+/-2.6 vs. 4.2+/-2.8, p = 0.001 and 1.4+/-1.7 vs. 4.1+/-2.2, p = 0.007, respectively). Retinal thickness in the two settings was significantly different only in the outer-superior region in DME. CONCLUSIONS: Optimal distance settings improve SD-OCT SSI with a decrease in RBDEs while retinal thickness measurements are independent of scanning distance

    Three year experience with the cochlear BAHA attract implant: a systematic review of the literature

    Get PDF
    Background Bone conduction devices are widely used and indicated in cases of conductive, mixed or single sided deafness where conventional hearing aids are not indicated or tolerated. Percutaneous bone-conduction devices gave satisfactory hearing outcomes but were frequently complicated by soft tissue reactions. Transcutaneous bone conduction devices were developed in order to address some of the issues related to the skin-penetrating abutment. The aim of this article is to present a systematic review of the indications, surgical technique and audiological, clinical and functional outcomes of the BAHA Attract device reported so far. Methods A systematic computer-based literature search was performed on the PubMed database as well as Scopus, Cochrane and Google Scholar. Out of 497 articles, 10 studies and 89 reported cases were finally included in our review. Results The vast majority of implanted patients were satisfied with the aesthetics of the device scoring highly at the Abbreviated Profile of Hearing Aid Benefit, Glasgow Benefit Inventory and Client Oriented Scale of Improvement. Overall, hearing outcomes, tested by various means including speech in noise, free field hearing testing and word discrimination scores showed a significant improvement. Complications included seroma or haematoma formation, numbness around the area of the flap, swelling and detachment of the sound processor from the external magnet. Conclusions The functional and audiological results presented so far in the literature have been satisfactory and the complication rate is low compared to the skin penetrating Bone Conduction Devices. Further robust trials will be needed to study the long-term outcomes and any adverse effects

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore