893 research outputs found

    Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation

    Get PDF
    Cisplatin-based chemotherapeutic regimens are the most frequently used (neo)adjuvant treatments for the majority of solid tumors. While platinum-based chemotherapeutic regimens have proven effective against highly proliferative malignant tumors, significant relapse and progression rates as well as decreased overall survival are still observed. Currently, it is known that sub-populations of chemoresistant cells share biological properties with cancer stem cells (CSC), which are believed to be responsible for tumor relapse, invasion and ultimately disease dissemination through acquisition of mesenchymal cell traits. In spite of concentrated efforts devoted to decipher the mechanisms underlying CSC chemoresistance and to design targeted therapeutics to these cells, proteomics has failed to unveil molecular signatures capable of distinguishing between malignant and non-malignant stem cells. This has hampered substantial developments in this complex field. Envisaging a novel rationale for an effective therapy, the current review summarizes the main cellular and molecular mechanisms underlying cisplatin resistance and the impact of chemotherapy challenge in CSC selection and clinical outcome. It further emphasizes the growing amount of data supporting a role for protein glycosylation in drug resistance. The dynamic and context-dependent nature of protein glycosylation is also comprehensively discussed, hence highlighting its potentially important role as a biomarker of CSC. As the paradigm of cancer therapeutics shifts towards precision medicine and patient-tailored therapeutics, we bring into focus the need to introduce glycomics and glycoproteomics in holistic pan-omics models, in order to integrate diverse, multimodal and clinically relevant information towards more effective cancer therapeutics.This work was supported by European Union funds (FEDER/COMPETE) and by national funds (FCT, the Portuguese Foundation for Science and Technology) under the projects with the references FCOMP-01-0124-FEDER 028188 (PTDC/BBB-EBI/0786/2012) and PTDC/BBB-EBI/0567/2014. C.R. acknowledges the support by Gastric Glyco Explorer Initial Training Network (Seventh Framework Programme grant no. 316929). IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT, (PEst-C/SAU/LA0003/2013). Grants were received from FCT: SFRH/BPD/111048/2015 to J.A.F and SFRH/BD/111242/2015 to A.P. FCT is co-financed by European Social Fund (ESF) under Human Potential Operation Programme (POPH) from National Strategic Reference Framework (NSRF)

    Rhythmic expression of the cycle gene in a hematophagous insect vector

    Get PDF
    BACKGROUND: A large number of organisms have internal circadian clocks that enable them to adapt to the cyclic changes of the external environment. In the model organism Drosophila melanogaster, feedback loops of transcription and translation are believed to be crucial for the maintenance of the central pacemaker. In this mechanism the cycle (or bmal1) gene, which is constitutively expressed, plays a critical role activating the expression of genes that will later inhibit their own activity, thereby closing the loop. Unlike Drosophila, the molecular clock of insect vectors is poorly understood, despite the importance of circadian behavior in the dynamic of disease transmission. RESULTS: Here we describe the sequence, genomic organization and circadian expression of cycle in the crepuscular/nocturnal hematophagous sandfly Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. Deduced amino acid sequence revealed that sandfly cycle has a C-terminal transactivation domain highly conserved among eukaryotes but absent in D. melanogaster. Moreover, an alternative form of the transcript was also identified. Interestingly, while cycle expression in Drosophila and other Diptera is constitutive, in sandflies it is rhythmic in males and female heads but constitutive in the female body. Blood-feeding, which causes down-regulation of period and timeless in this species, does not affect cycle expression. CONCLUSION: Sequence and expression analysis of cycle in L. longipalpis show interesting differences compared to Drosophila suggesting that hematophagous vector species might present interesting new models to study the molecular control of insect circadian clocks

    Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhodium (II) citrate (Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4</sub>) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4 </sub>as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4 </sub>and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4</sub>) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures.</p> <p>Results</p> <p>Treatment with free Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4 </sub>induced cytotoxicity that was dependent on dose, time, and cell line. The IC<sub>50 </sub>values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4</sub>-loaded maghemite nanoparticles (Magh-Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4</sub>) and Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4</sub>-loaded magnetoliposomes (Lip-Magh-Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4</sub>) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4</sub>, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4 </sub>induces cell death by apoptosis.</p> <p>Conclusions</p> <p>The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4 </sub>treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh<sub>2</sub>(H<sub>2</sub>cit)<sub>4 </sub>delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.</p

    Strain-dependent host transcriptional responses to toxoplasma infection are largely conserved in mammalian and avian hosts

    Get PDF
    Toxoplasma gondii has a remarkable ability to infect an enormous variety of mammalian and avian species. Given this, it is surprising that three strains (Types I/II/III) account for the majority of isolates from Europe/North America. The selective pressures that have driven the emergence of these particular strains, however, remain enigmatic. We hypothesized that strain selection might be partially driven by adaptation of strains for mammalian versus avian hosts. To test this, we examine in vitro, strain-dependent host responses in fibroblasts of a representative avian host, the chicken (Gallus gallus). Using gene expression profiling of infected chicken embryonic fibroblasts and pathway analysis to assess host response, we show here that chicken cells respond with distinct transcriptional profiles upon infection with Type II versus III strains that are reminiscent of profiles observed in mammalian cells. To identify the parasite drivers of these differences, chicken fibroblasts were infected with individual F1 progeny of a Type II x III cross and host gene expression was assessed for each by microarray. QTL mapping of transcriptional differences suggested, and deletion strains confirmed, that, as in mammalian cells, the polymorphic rhoptry kinase ROP16 is the major driver of strain-specific responses. We originally hypothesized that comparing avian versus mammalian host response might reveal an inversion in parasite strain-dependent phenotypes; specifically, for polymorphic effectors like ROP16, we hypothesized that the allele with most activity in mammalian cells might be less active in avian cells. Instead, we found that activity of ROP16 alleles appears to be conserved across host species; moreover, additional parasite loci that were previously mapped for strain-specific effects on mammalian response showed similar strain-specific effects in chicken cells. These results indicate that if different hosts select for different parasite genotypes, the selection operates downstream of the signaling occurring during the beginning of the host's immune response. © 2011 Ong et al

    Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus)

    Get PDF
    <p><b>Abstract</b></p> <p><b>Background</b></p> <p>In tropical countries, losses caused by bovine tick <it>Rhipicephalus (Boophilus) microplus</it> infestation have a tremendous economic impact on cattle production systems. Genetic variation between <it>Bos taurus</it> and <it>Bos indicus</it> to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (<it>Bos indicus</it>) × Holstein (<it>Bos taurus</it>) cross.</p> <p>Results</p> <p>Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23.</p> <p>Conclusions</p> <p>The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.</p

    The International Postal Network and Other Global Flows as Proxies for National Wellbeing.

    Get PDF
    The digital exhaust left by flows of physical and digital commodities provides a rich measure of the nature, strength and significance of relationships between countries in the global network. With this work, we examine how these traces and the network structure can reveal the socioeconomic profile of different countries. We take into account multiple international networks of physical and digital flows, including the previously unexplored international postal network. By measuring the position of each country in the Trade, Postal, Migration, International Flights, IP and Digital Communications networks, we are able to build proxies for a number of crucial socioeconomic indicators such as GDP per capita and the Human Development Index ranking along with twelve other indicators used as benchmarks of national well-being by the United Nations and other international organisations. In this context, we have also proposed and evaluated a global connectivity degree measure applying multiplex theory across the six networks that accounts for the strength of relationships between countries. We conclude by showing how countries with shared community membership over multiple networks have similar socioeconomic profiles. Combining multiple flow data sources can help understand the forces which drive economic activity on a global level. Such an ability to infer proxy indicators in a context of incomplete information is extremely timely in light of recent discussions on measurement of indicators relevant to the Sustainable Development Goals.Project LASAGNE Contract No. 318132 (STREP) - funded by the European CommissionThis is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.015597
    corecore