1,055 research outputs found

    Transcriptional profiling of eosinophil subsets in interleukin-5 transgenic mice

    Get PDF
    Eosinophils are important in fighting parasitic infections and are implicated in the pathogenesis of asthma and allergy. IL-5 is a critical regulator of eosinophil development, controlling proliferation, differentiation, and maturation of the lineage. Mice that constitutively express IL-5 have in excess of 10-fold more eosinophils in the hematopoietic organs than their wild type (WT) counterparts. We have identified that much of this expansion is in a population of Siglec-F high eosinophils, which are rare in WT mice. In this study, we assessed transcription in myeloid progenitors, eosinophil precursors, and Siglec-F medium and Siglec-F high eosinophils from IL-5 transgenic mice and in doing so have created a useful resource for eosinophil biologists. We have then utilized these populations to construct an eosinophil trajectory based on gene expression and to identify gene sets that are associated with eosinophil lineage progression. Cell cycle genes were significantly associated with the trajectory, and we experimentally demonstrate an increasing trend toward quiescence along the trajectory. Additionally, we found gene expression changes associated with constitutive IL-5 signaling in eosinophil progenitors, many of which were not observed in eosinophils

    Free energies of binding of R- and S-propranolol to wild-type and F483A mutant cytochrome P450 2D6 from molecular dynamics simulations

    Get PDF
    Detailed molecular dynamics (MD) simulations have been performed to reproduce and rationalize the experimental finding that the F483A mutant of CYP2D6 has lower affinity for R-propranolol than for S-propranolol. Wild-type (WT) CYP2D6 does not show this stereospecificity. Four different approaches to calculate the free energy differences have been investigated and were compared to the experimental binding data. From the differences between calculations based on forward and backward processes and the closure of thermodynamic cycles, it was clear that not all simulations converged sufficiently. The approach that calculates the free energies of exchanging R-propranolol with S-propranolol in the F483A mutant relative to the exchange free energy in WT CYP2D6 accurately reproduced the experimental binding data. Careful inspection of the end-points of the MD simulations involved in this approach, allowed for a molecular interpretation of the observed differences

    Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment

    Get PDF
    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Evidence for a role of TRIB3 in the regulation of megakaryocytopoiesis

    Get PDF
    Megakaryocytopoiesis is a complex differentiation process driven by the hormone thrombopoietin by which haematopoietic progenitor cells give rise to megakaryocytes, the giant bone marrow cells that in turn break down to form blood platelets. The Tribbles Pseudokinase 3 gene (TRIB3) encodes a pleiotropic protein increasingly implicated in the regulation of cellular differentiation programmes. Previous studies have hinted that TRIB3 could be also involved in megakaryocytopoiesis but its role in this process has so far not been investigated. Using cellular model systems of haematopoietic lineage differentiation here we demonstrate that TRIB3 is a negative modulator of megakaryocytopoiesis. We found that in primary cultures derived from human haematopoietic progenitor cells, thrombopoietin-induced megakaryocytic differentiation led to a time and dosedependent decrease in TRIB3 mRNA levels. In the haematopoietic cell line UT7/mpl, silencing of TRIB3 increased basal and thrombopoietin-stimulated megakaryocyte antigen expression, as well as basal levels of ERK1/2 phosphorylation. In primary haematopoietic cell cultures, silencing of TRIB3 facilitated megakaryocyte differentiation. In contrast, over-expression of TRIB3 in these cells inhibited the differentiation process. The in-vitro identification of TRIB3 as a negative regulator of megakaryocytopoiesis suggests that in-vivo this gene could be important for the regulation of platelet production

    Specific phobia predicts psychopathology in young women

    Get PDF
    Contains fulltext : 90255.pdf (publisher's version ) (Closed access)Although specific phobia is characterized by an early age at onset and by high rates of comorbidity, few studies have examined comorbid relationships prospectively. The present study investigated the association between specific phobia and the risk of a broad range of psychopathology among young women in the community. Data came from the Dresden Predictor Study in which 1,538 German women (18-25 years) completed a diagnostic interview at two time points. Women with specific phobia had a twofold increase in odds of developing any anxiety disorder, generalized anxiety disorder, depression, and any somatoform disorder during 17 months, compared to women without specific phobia. Except for depression, these associations persisted after adjustment for all comorbid mental disorders. Specific phobia thus appears to be a risk factor for a variety of problems. The result further underpins the necessity for early intervention for specific phobia to prevent later mental health problems

    Identification of a Siglec-F+ granulocyte-macrophage progenitor

    Get PDF
    In recent years multi-parameter flow cytometry has enabled identification of cells at major stages in myeloid development; from pluripotent hematopoietic stem cells, through populations with increasingly limited developmental potential (common myeloid progenitors and granulocyte-macrophage progenitors), to terminally differentiated mature cells. Myeloid progenitors are heterogeneous, and the surface markers that define transition states from progenitors to mature cells are poorly characterized. Siglec-F is a surface glycoprotein frequently used in combination with IL-5 receptor alpha (IL5Rα) for the identification of murine eosinophils. Here, we describe a CD11b+ Siglec-F+ IL5Rα- myeloid population in the bone marrow of C57BL/6 mice. The CD11b+ Siglec-F+ IL5Rα- cells are retained in eosinophil deficient PHIL mice, and are not expanded upon overexpression of IL-5, indicating that they are upstream or independent of the eosinophil lineage. We show these cells to have GMP-like developmental potential in vitro and in vivo, and to be transcriptionally distinct from the classically described GMP population. The CD11b+ Siglec-F+ IL5Rα- population expands in the bone marrow of Myb mutant mice, which is potentially due to negative transcriptional regulation of Siglec-F by Myb. Lastly, we show that the role of Siglec-F may be, at least in part, to regulate GMP viability
    corecore