60 research outputs found

    Integrating transposable elements in the 3D genome

    Get PDF
    Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome

    Computation of the Transient in Max-Plus Linear Systems via SMT-Solving

    Full text link
    This paper proposes a new approach, grounded in Satisfiability Modulo Theories (SMT), to study the transient of a Max-Plus Linear (MPL) system, that is the number of steps leading to its periodic regime. Differently from state-of-the-art techniques, our approach allows the analysis of periodic behaviors for subsets of initial states, as well as the characterization of sets of initial states exhibiting the same specific periodic behavior and transient. Our experiments show that the proposed technique dramatically outperforms state-of-the-art methods based on max-plus algebra computations for systems of large dimensions.Comment: The paper consists of 22 pages (including references and Appendix). It is accepted in FORMATS 2020 First revisio

    The Dynamics of Supply and Demand in mRNA Translation

    Get PDF
    We study the elongation stage of mRNA translation in eukaryotes and find that, in contrast to the assumptions of previous models, both the supply and the demand for tRNA resources are important for determining elongation rates. We find that increasing the initiation rate of translation can lead to the depletion of some species of aa-tRNA, which in turn can lead to slow codons and queueing. Particularly striking “competition” effects are observed in simulations of multiple species of mRNA which are reliant on the same pool of tRNA resources. These simulations are based on a recent model of elongation which we use to study the translation of mRNA sequences from the Saccharomyces cerevisiae genome. This model includes the dynamics of the use and recharging of amino acid tRNA complexes, and we show via Monte Carlo simulation that this has a dramatic effect on the protein production behaviour of the system

    Macroscopic coherent structures in a stochastic neural network: from interface dynamics to coarse-grained bifurcation analysis

    Get PDF
    We study coarse pattern formation in a cellular automaton modelling a spatially-extended stochastic neural network. The model, originally proposed by Gong and Robinson (Phys Rev E 85(5):055,101(R), 2012), is known to support stationary and travelling bumps of localised activity. We pose the model on a ring and study the existence and stability of these patterns in various limits using a combination of analytical and numerical techniques. In a purely deterministic version of the model, posed on a continuum, we construct bumps and travelling waves analytically using standard interface methods from neural field theory. In a stochastic version with Heaviside firing rate, we construct approximate analytical probability mass functions associated with bumps and travelling waves. In the full stochastic model posed on a discrete lattice, where a coarse analytic description is unavailable, we compute patterns and their linear stability using equation-free methods. The lifting procedure used in the coarse time-stepper is informed by the analysis in the deterministic and stochastic limits. In all settings, we identify the synaptic profile as a mesoscopic variable, and the width of the corresponding activity set as a macroscopic variable. Stationary and travelling bumps have similar meso- and macroscopic profiles, but different microscopic structure, hence we propose lifting operators which use microscopic motifs to disambiguate them. We provide numerical evidence that waves are supported by a combination of high synaptic gain and long refractory times, while meandering bumps are elicited by short refractory times

    Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells

    Get PDF
    Gene expression states influence the three-dimensional conformation of the genome through poorly understood mechanisms. Here, we investigate the conformation of the murine HoxB locus, a gene-dense genomic region containing closely spaced genes with distinct activation states in mouse embryonic stem (ES) cells. To predict possible folding scenarios, we performed computer simulations of polymer models informed with different chromatin occupancy features, which define promoter activation states or CTCF binding sites. Single cell imaging of the locus folding was performed to test model predictions. While CTCF occupancy alone fails to predict the in vivo folding at genomic length scale of 10 kb, we found that homotypic interactions between active and Polycomb-repressed promoters co-occurring in the same DNA fibre fully explain the HoxB folding patterns imaged in single cells. We identify state-dependent promoter interactions as major drivers of chromatin folding in gene-dense regions

    Protein/DNA interactions in complex DNA topologies: expect the unexpected

    Get PDF
    DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology
    corecore