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Abstract 

Understanding 3-D chromatin organisation and function is a goal for molecular biology. Traditionally, 

questions were addressed using experiments but as datasets increase in size, reaching a mechanistic 

interpretation is challenging. Consequently, polymer simulations and mechanistic modelling are 

necessary to explain function. As these approaches are daunting we provide a guide for biologists to 

comprehend and appreciate what they are used for. When research questions can only be addressed 

by interdisciplinary teams understanding each other’s languages and methods will facilitate 

breakthroughs. 
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Introduction 

In the last couple of decades technological advances in both next-generation sequencing and microscopy 

have led to an explosion of new methods to probe genome structure and function. With this has come 

an increase in the size and complexity of experimental data sets, which are not always easy to 

understand and interpret. One example is the genome wide and high-throughput variant of 

chromosome-conformation-capture, known as Hi-C (for a review of this and other 3C methods see 1). 

This method provides a population level read out of how likely two genomic loci are in spatial proximity. 

It has taught us that interactions within the genome are not random but are instead highly structured. 

At large scales, interactions between active chromatin regions and associations between inactive 

chromatin regions are enriched compared to active-inactive interactions—i.e. there is a segregation of 

the genome into compartments2. At shorter length scales, chromosomes are partitioned into contiguous 

regions which show enriched self-interactions, known as domains or TADs (topologically associating 

domains)3; many domains are associated with chromatin loops (between, for example, binding sites of 

the CCCTC-binding factor, CTCF)4. More recently, higher resolution data sets have revealed features such 

as “stripes” of enriched interaction emanating from super enhancers5,6 (also called “frequently 

interacting regions” or FIREs). As experiments have become more quantitative and data sets larger, 

researchers are turning to methods common in other data-rich fields: for example, statistical modelling, 

machine learning, and – the subject of this perspective – mechanistic modelling. Mechanistic models, 

which seek to understand why a system behaves as it does, are common in the physical sciences; they 

are often based on simplified mathematical or computational representations of a system, fitting 

together individual components to study emergent behaviour.  

Here we consider mechanistic modelling of chromatin structure and function, focussing on approaches 

which originate from soft matter, and polymer physics. Soft matter physics is the study of “soft” 

materials such as gels, colloids and polymers; materials often found in biology – in tissues, in the 

cytoplasm, or in the nucleus. The defining feature of soft matter systems is that their macroscopic 

behaviour originates from their mesoscopic properties: behaviour is governed by thermal fluctuations, 

self-organisation and entropy. Importantly the properties of these systems often do not depend on 

precise microscopic or molecular details, which enables simplified “coarse-grained” modelling 

approaches7. While molecular details are of course crucial for biological function (and active processes 
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can introduce phenomena, which transcend equilibrium thermodynamics), the mesoscale approach has 

often proved fruitful8. A reductionist approach and “search for universality” are common in physic; this 

may seem at odds with the view from biology, where frequently “the devil is in the detail”. Nevertheless, 

there is a growing consensus that combining approaches, and a shared way of thinking, can provide 

understanding of molecular processes. 

With mechanistic modelling come mathematical equations, numerical methods, and computer 

simulations – approaches less common in biological sciences. In this perspective we aim to demystify 

these concepts in the context of chromatin folding, chart progress to date, and give a perspective on 

what the future holds. 

 

The approach to modelling: backwards or forwards. 

When modelling the three-dimensional (3-D) structure of chromosomes there are two commonly used 

approaches: inverse or “fitting” based models and forward or “mechanistic” models. In the inverse case, 

you start with experimental data, such as chromosome interactions e.g. from 5C or Hi-C, and use that 

information to reconstruct the spatial arrangement of the chromosome in 3-D, via a fitting or iterative 

procedure. Early attempts used the data to infer a set of constraints on the separation of different 

genomic loci, using those as a basis for statistical or matrix methods to generate a single “average” 

chromosome conformation9. More recently, methods from polymer physics – where the chromatin fibre 

is represented as a connected chain of interacting units – have been applied10,11; the interaction 

parameters are then determined using an iterative procedure which improves the fit of the model. 

Usually, the polymer approaches generate a population of 3-D conformations, and in some cases once 

an optimal parameter set is found, the same model can be applied to different chromosomes or cell 

types11. 

Importantly, with inverse modelling one starts with an experimental data set and is interested in 

generating structures consistent with that data. Though the approach can successfully reproduce, for 

example, Hi-C interaction maps, it often reveals little about the microscopic mechanisms behind the 

observed structures. In mechanistic, or forward modelling the aim is different. Instead of reproducing 

experimental data, there is a desire to understand the mechanisms behind the observations, e.g. 
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addressing questions such as how does a chromosome segregate into an active and inactive 

compartment, or how do chromatin domains form? Mechanistic models usually start from first principles 

or hypotheses and ask whether different microscopic possibilities can generate the observed behaviours. 

A common approach (which is prevalent in the physical sciences) is to start with a simple description of 

the system (i.e. a minimal model), and then systematically add detail until the model reproduces the 

experimental observations. Such models can also incorporate experimental data, but the “output” will 

usually be a different kind of information from the “input”. While in the inverse modelling case the input 

might be a Hi-C map, and the output will be a reproduced Hi-C map along with a 3-D structure, a 

mechanistic model might use protein binding data together with some hypothesised “rules” to generate 

3-D structures and a simulated Hi-C map (but, Hi-C is not used as an input). In this way forward modelling 

is truly predictive, but the closeness of the prediction is unlikely to be as good as a fitting based model 

with many (or hundreds) of parameters; nevertheless, they have been hugely informative and provide 

an unique understanding of molecular mechanisms. 

Inverse modelling can be a useful tool – especially when there is a lot of existing data. For example, early 

studies revealed the importance of loops12, and that the observed interaction maps can be consistent 

with a population of chromosome structure which has a high degree of variability10. However, to 

understand what mechanisms are at play, forward modelling can often provide addition insights into the 

experimental system. 

 

Dynamical Polymer Models: Key Concepts and Ideas 

Most mechanistic modelling applied to chromatin has used simple models derived from polymer physics 

and molecular dynamics (MD) simulations13. MD is a scheme where the motion of atoms or molecules 

are simulated within the computer. The principle behind the method is simple: atoms move according 

to Newton’s second law, which states that the force exerted on a body is equal to its mass multiplied by 

its acceleration (Figure 1A). This equation of motion is solved to simulate how the positions of all the 

atoms in a system change with time. After deciding where to initially place the atoms, the remaining 

problem is to calculate the forces which each atom will experience. In practice this can be challenging: 

each atom will experience forces due to interactions with all of the surrounding atoms (Coulomb 
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interactions due to charge, van der Waals interactions etc.); nevertheless, it has been possible to write 

down a set of interaction potentials (based on calculations from quantum chemistry, collectively 

described as a “force field”) which results in realistic behaviour. Such “all-atom” MD simulations have 

been applied to proteins, as well as DNA and DNA-protein interactions. However, calculating the forces 

(including those between solvent atoms such as water and salt ions etc.) is computationally expensive, 

and typically this can only be done for a short DNA segment or a single protein subunit (for example it 

currently takes around a day to simulate the behaviour of a protein consisting of 142,000 atoms for 100 

ns on 256 compute cores, or about 0.3 ns per day per core).  

To simulate larger experimental systems, one must adapt the method – one way to do this is by removing 

the solvent from the simulation. Instead of explicitly treating all of the water molecules their effects can 

be included in an implicit way. Common methods include Brownian or Langevin Dynamics; the simplest 

method is to include only the viscous drag and “thermal jostling” which water provides, and done 

correctly this leads to the thermal diffusion properties of the system being accurately represented 

(Figure 1Bi and see Box 1 for details).  More complicated approaches might include hydrodynamic 

interactions or to include the effect of salt ions one might need to modify the interaction force field, e.g. 

to account for electrostatic screening. 

Even after removing the solvent, the size of systems which can be simulated with an all-atom treatment 

remains small. And anyway, keeping track of the position of every atom within a chromosome is unlikely 

to be informative. To circumvent these problems large molecular systems simulations are often coarse-

grained (CG): collections of atoms or molecules are replaced by larger and simpler objects but the same 

method of solving Newton’s law with an implicit solvent can be used (Figure 1Bii-iii). One must also have 

a scheme for determining the forces that the simplified objects will exert on each other – these 

interaction potentials are often phenomenological in nature (i.e. one uses a set of interactions which 

gives rise to the correct macroscopic behaviour, but which need not be microscopically realistic). 

Developing a CG model is no easy task; deciding on how much detail to include in a model in order to 

learn something meaningful is an art. This of course depends on the question (see Table 1): to investigate 

how a polymerase bends and twists DNA during transcription it might be important to model the double 

helix of the DNA14,17; on the other hand, to understand how a chromatin fibre is formed, perhaps the 

double helix structure is less important, but a description of the nucleosome needs to be included18. To 



 6 

model a whole chromosome or chromosome region, most work has used a much lower level of detail 

where a chromatin fibre is represented by a connected chain of beads, with each bead representing 

several thousand base-pairs of DNA - it is these large-scale simulations which have been informative for 

understanding chromatin organisation. 

While a chain of beads might sound like a crude model for chromatin, it has been remarkably successful 

in explaining many of the observations from experiments like Hi-C. This level of detail also allows 

concepts from polymer physics to provide novel insights. The key idea is that if a polymer is represented 

as a chain of connected units which are otherwise free to move in space, this then looks like a random 

walk (or a self-avoiding walk), which has well known statistics7, that can be used to make predictions. 

Thus, starting from this knowledge, questions such as “On average how much space will a polymer of 

given length take up?” or “What is the probability that the polymer will be forming a loop?” can be 

addressed. Complexity can then be added to the description, for example by considering the flexibility 

of a polymer, or the solvent conditions. These statistical methods have been applied, for instance, to 

predict how the average level of Hi-C interactions decay with genomic separation19, or how likely 

chromatin loops of certain length form. Often it is when an observed quantity does not fit the statistical 

description that we learn something – if the statistics of a free polymer predict one result, but something 

else is observed (either experimentally or computationally), there must be some mechanism we have 

not considered.   

To understand how polymer simulations are performed, some practical details often give context. MD 

simulations and their variants are mature methods in the physics community and there are many 

software packages. The “bead-chain” simulations described below are often performed using very 

general and adaptable open-source MD codes developed with the programming savvy user in mind. The 

advantage of such software is that after many years of development they run efficiently on the latest 

computer hardware, are highly scalable when run on computer clusters, and have a broad user base who 

provide updates and new optimisations. In Box 2 some of the most popular software packages are listed, 

and outline how these are used and on what type of computer hardware. 

 

Evolution and success of polymer models 
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Recent mechanistic models, which treat chromatin as a simple polymer, have improved the 

interpretation of results from Hi-C and other experiments.  

Some of the first polymer simulations to study chromatin at a genomic scale considered the role of 

entropic effects in chromosome positioning, showing that chromatin fibre properties such as flexibility 

can control radial positioning of chromosomes or chromosome regions20. Other work used simulations 

and polymer theory to estimate time-scales for chromosome dynamics – revealing that the time required 

for two human chromosomes to become intermingled is of the order of 100s of years, putting into new 

light observations of chromosome territories, and how individual loci can be highly dynamic (e.g. 

structural changes after an inflammatory response can be observed within as little as 30 mins), while 

whole chromosomes appear relatively static (remaining in territories for the duration of the cell cycle21).  

A more recent model which considered the formation of chromosome domains was the “strings-and-

binders-switch” model22. This took a bead-chain polymer model and introduced generalized “binders”: 

single beads which represented chromatin-binding protein complexes which form bridges between 

chromatin regions. That work revealed that bridging binders can lead to chromatin interactions with the 

right scaling of interactions as a function of genomic separation, and provides a mechanism for different 

levels of compaction in different chromatin regions. Around the same time, we also developed a bead-

chain model with diffusing bridges (or “factors”)23; by performing simulations of large chromosome 

regions (up to whole chromosomes) at a higher resolution (one to three kbps of DNA per bead) we 

uncovered a concept we called “bridging-induced attraction” – see Figure 2A. Mechanistically this 

describes a tendency for protein complexes which can form molecular bridges between multiple regions 

of DNA or chromatin (stabilising loops) to cluster together, even in the absence of interactions between 

the complexes. The attraction arises due to a positive feedback where the first loop to form creates a 

local increase in DNA density which promotes the binding of further proteins in that region, which further 

increases density, etc. The resulting cluster formation can be thought of as phase separation (or, more 

precisely, micro phase separation, as multiple clusters remain in steady state) – a mechanism now 

thought to be important for the formation of many nuclear structures24. Later work showed that using 

multiple species of bridges/factors and patterning the bead-chain with binding sites for these factors 

could drive the polymer into specific 3-D structures25. Using experimental data to position the binding 

sites it is possible to predict the Hi-C maps observed in experiments (Figure 2A top right; and since this 
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is a forward modelling scheme, it is truly a prediction as Hi-C data was not an input to the model). Rather 

than using specific known species of protein or protein complex, the factors are assumed to be generic 

chromatin binders, and then rather than identifying precise binding sites, data such as ChIP-seq for 

different histone modifications are used to identify broad regions of binding. With this “simplistic” 

model25 it was found that with only two bridge species, an active factor (perhaps representing 

polymerase/transcription factor complexes), and a repressive factor (perhaps polycomb complexes, or 

HP1), remarkably it was possible to reproduce the interactions vs genomic separation scaling and predict 

the locations of 85% of chromatin domain boundaries.  

As well as being able to generate interaction maps, these “transcription factor” (or “diffusing bridge”) 

models give predictions on spatial organisation and dynamics of bridge complexes. The protein clusters 

which arise in the simulations look similar to some of the phase separated membrane-less organelles. 

For example, clusters of polycomb like proteins resemble polycomb bodies, and clusters of activating 

proteins can be thought of as transcription factories30. However, a more detailed inspection of the 

simulations showed that the dynamics of the protein clusters are not the same as nuclear bodies in an 

important respect: once formed the clusters are very stable, and proteins are not “turned over” 

(exchanged with a soluble pool). A refined model31 adds a feature where the proteins stochastically 

switch from a binding to a non-binding state. This could represent post-translational modifications, 

active protein degradation, or programmed polymerase unbinding after transcription termination. This 

leads to more dynamic nuclear body-like clusters where proteins turn-over while the body retains its 

shape and size (Figure 2A, bottom right). Importantly this drives the system away from equilibrium 

(switching represents active chemical reactions which hydrolyse ATP) and provides a mechanism 

through which the cell can control protein clustering and concomitantly phase separation. The switching 

model is an example where a discrepancy between the original simulations with experimental 

observations led to model refinement and improved understanding.  

Active protein unbinding is just one example of an out-of-equilibrium process which affects genome 

organisation. Biological systems are inherently away from equilibrium, as they take in energy from their 

surroundings to drive internal processes. Including out-of-equilibrium processes is therefore often 

important; a challenge in coarse-grained modelling is to recognise when this additional ingredient is 

necessary to explain the behaviour of the system.  Active processes break “detailed balance” which can 
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dramatically effects macroscopic behaviour. At equilibrium, as each process in the system must be 

balanced by its reverse process, a movie of a simulation looks essentially the same when played forwards 

or backwards: this time-reversal symmetry is typically lost when models include active out-of-

equilibrium processes.  Another important consideration is that as the cell exits mitosis, the compacted 

mitotic chromosomes expand into their interphase configurations – they relax towards a new 

equilibrium state (but might not reach that state within biologically relevant time scales). This means 

that when running a simulation without an active process, one must consider carefully whether an 

equilibrium condition has been reached, whether such a state is relevant, and whether the outcome of 

the simulations will be affected by the initial configuration.  

Other recent work32 showed that to reproduce many of the features of a Hi-C map, it is not necessary to 

explicitly model the diffusing proteins – instead a direct attractive interaction between the polymer 

beads is sufficient. This could represent either bridging factors which are already bound to the 

chromatin, or direct chromatin-chromatin interactions mediated by charges on the nucleosome surface 

or histone tail interactions. While those models (usually known as “block copolymer models”) can give 

good prediction of Hi-C maps (for example in Drosophila), obviously without an explicit representation 

of the bridging proteins, they cannot give any information about protein foci dynamics.  

Another well-known model based on ideas developed through polymer physics is “loop extrusion”26,27. 

The loop extrusion model was first invoked to explain the puzzling observation that long-range 

interactions between binding sites of the CCCTC-binding factor (CTCF) – which has a binding motif with 

a specific direction on the DNA – tend to be found when the binding motifs have a specific “convergent” 

orientation4. Such a strong bias is difficult to reconcile with loops that form due to two sites diffusing 

into contact. Instead, the model proposes that a factor binds at some point between the CTCF sites and 

extrudes the loop outwards (Figure 2B).  There is growing evidence that the SMC protein cohesin is 

involved in this extrusion process, but it is still unclear if a unidirectional “motor” is required to push the 

chromatin into loops26,27, or if diffusive sliding of cohesin is sufficient28. Nevertheless, the loop extrusion 

concept has been successful, providing clear qualitative explanations for experimental observations. It 

explains changes in chromatin interactions resulting from “genome editing” experiments which 

manipulated CTCF binding sites26, it also explains changes observed in Hi-C data when CTCF33, 

cohesin34,35, or factors involved in cohesin loading and unloading36,37 are knocked out.   It is also thought 
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that an extrusion mechanism, this time involving condensin, is involved in chromosome compaction 

during mitosis29,38.  

There is growing evidence that in reality, chromosome organisation is driven both by bridging protein 

complexes, and some form of extrusion, and combination models have now been developed39. While 

extrusion can explain CTCF looping, it does not provide a mechanism for compartment formation; 

conversely, a bridging mechanism readily explains compartments but cannot generate CTCF loops with 

a motif direction bias. Together, these two physics-based models explain many of the observations from 

Hi-C experiments, including compartments, domains and loops. Particularly, the fact that compartment 

patterns remain, but (loop-mediated) TADs are lost from Hi-C maps when cohesin (or its loading factor) 

is removed suggests that these features arise through different mechanisms34,35. 

 

Chromosome folding at the gene-scale 

The polymer models described above have mainly been concerned with chromosome organisation at 

large scales, 100s of kilo-base to mega-base. In contrast, other efforts have focussed on an intermediate 

scale, studying the looping and folding of chromatin around specific genes and gene loci, which consider 

cis-regulatory promoter/enhancer interactions explicitly. Experimentally, higher resolution chromosome 

population level interaction data can be obtained using methods such as 4C or Capture-C40, and single 

cell information can be collected through microscopy techniques such as fluorescent in-situ hybridisation 

(FISH). In simulations greater levels of detail can be probed using different coarse-graining, by using more 

“beads” to represent the same length of chromatin.  

Our work simulating looping of mouse globin genes41 revealed that to capture higher-resolution 

interactions it is necessary to use different input data for the polymer model. Although using histone 

modification data to infer protein binding can give good predictions of domains and compartments, 

more specific binding site placement is required to predict promoter-enhancer contacts. For example, 

ChIP data for transcription factors can be used, but we observed that Capture-C results could be 

predicted using only DNA accessibility information derived from DNase- or ATAC-seq experiments. 

Importantly, these protein-binding driven simulations could generate an ensemble of locus 

conformations which were largely consistent with both population (Capture-C) and single cell (FISH) 
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data. An important feature of these simulations is that the full details of each locus conformation within 

the population are retained, allowing the variability of the locus structure to be examined in a way that 

is still not possible experimentally. For the globin genes, analysis of the simulations implied that these 

loci tend to organise into one of a small number of possible structures, for example, forming a single 

compacted globule, two separated globules, or more extended shapes. 

Applying a similar model (but now incorporating diffusing bridges and loop extruders) to the 

developmental gene Pax6 in cell lines where the gene has different levels of transcriptional activity 

revealed different behaviour42.  First, this model gave good predictions of interactions at the population 

level (simulating Capture-C data), but it failed to correctly predict the shape of the locus at the single cell 

level (simulating FISH data). Experimentally when Pax6 was transcribed at a low to moderate level, the 

locus was more compact compared to the case where the gene was inactive (the separation between 

the Pax6 promoter and its enhancers decreased). Surprisingly in a cell line where Pax6 was highly active, 

the locus became more expanded (with separations between the promoter and one enhancer 

significantly increasing). This variation was not correctly predicted by the simulations; again, and 

importantly, the failure of the model led to new ideas for how the chromatin within the locus changes 

in these different cell types. The data showed that although large regions of the locus gained a histone 

acetylation mark associated with active enhancers (H3K27ac), this was not accompanied by an increase 

in looping between those regions and the promoters (as expected from the classic model of enhancer 

action). We reasoned that this mark was instead associated with some local change in the properties of 

chromatin which led us to a new “heteromorphic polymer” or HiP-HoP model42 (Figure 3A). We 

hypothesised that the acetylation mark corresponded to regions of the chromatin with a less compact 

internal structure (an idea previously suggested by experiments such as RICC-seq43; indeed a simulation 

model which incorporates a fibre with varying linear compaction (different regions have a different 

amount of DNA per unit length) was able to reproduce all of the trends observed in the Capture-C and 

FISH data (Figure 3B-C). As the HiP-HoP model is predictive, it can now be used to analyse the structure 

of many other genes across different species (e.g. SOX2) to understand function. For example, the 

simulations of Pax6 revealed a much larger variation of structure within a population of the same cell 

type compared to the case of the globin genes, suggesting that regulation of different genes involves 

alternate structural mechanisms. 
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An important point which arose from the Pax6 study is that the classic model for enhancer-promoter 

interaction does not always seem to be at work. In comparing the inactive and low expression states, 

the distal Pax6 enhancers gain histone acetylation marks, and physical interactions with the promoters 

are observed – as expected. Moving to the high expression cell line, for one enhancer the acetylated 

region broadens, but the frequency of interactions with the promoters decreases (and their separation 

increases); either this site does not have an enhancer action in these cells, or it functions by a mechanism 

other than physical contact with the promoter. At any rate, the action is different for different expression 

states. On a more technical level, we note that the simple nature of these models allows the large-scale 

behaviour of the chromatin to be simulated, without needing a detailed knowledge of the molecular 

details, so questions such as, is it a 30-nm or 10-nm fibre, a one-start or two-start helix, do not have to 

be addressed. 

 

Outlook 

There is a growing body of work using mechanistic polymer models to understand chromosome 

organisation and function. Importantly, it is clear that these methods are not only useful when applied 

to data after experiments have been completed, but that simulations can also be used to test new ideas, 

to uncover new mechanisms, and to drive new experimental studies. A good example of this is the recent 

work on loop extrusion: initially this was a theoretical endeavour – one of the first published studies was 

entirely computational27 – but it rapidly prompted further experimental studies. In physics it is 

commonplace that computational work is conceptually ahead of what can be realised experimentally, 

and we believe that in the future this will become more prevalent in chromatin biology: in other words, 

we expect more and more often to see simulation work which does not follow, but instead provides new 

hypotheses that drive experiments. 

What does the future hold for polymer simulations in chromatin biology? Our recent HiP-HoP model 

suggests that if we want to study gene loci in more detail, we need models that resolve some of the 

structural properties of chromatin (and how that varies at different locations). There are models which 

have detailed coarse-grained representations of nucleosomes16,18– this approach has recently been used 

to study the HOXC locus44, which revealed that epigenetic factors play an important role in larger-scale 
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locus folding. But these detailed simulations are computationally expensive, and tend to be limited to 

small fibre sections – there is currently no model which resolves nucleosomes simply enough to allow 

simulation of large gene loci. If such a model were developed it could, for example, be used to study how 

specific patterns of nucleosome spacing around regulatory elements affects the 3-D fibre structure, or 

to better understand data from new experimental techniques such as ChromEMT45 (where electron 

microscopy is used to image nucleosomes in vivo).  

So, does progress equal developing models with more and more molecular detail? Not necessarily – the 

level of detail required in a model really depends on the questions, and the size of the system being 

investigated (see Table 1). For example, recent studies using less detailed models to examine 

compartmentalization and the global organisation of (hetero)chromatin within the nucleus have 

revealed that interactions between chromatin and the nuclear lamina play a key role, e.g. in the inverted 

structure observed in rod cells in nocturnal mammals46, and in structural changes during senescence and 

ageing related diseases47. Similar low-resolution models might be appropriate to study how 

chromosomes are compacted during mitosis38, or to study the kinetics of chromatid segregation during 

anaphase. Models with different scales and levels of detail might also be useful for gaining a more 

general understanding of mechanisms or phenomena such as DNA supercoiling, liquid-liquid phase 

separation of chromatin associated proteins, or active processes which occur within the nucleus. 

Over recent decades polymer and coarse-grained or “mesoscale” simulations have proven useful for 

studying soft matter physics. They are starting to be used in biological sciences, and we expect such 

methods to become commonplace for chromatin biology. What remains challenging is developing 

models which incorporate pertinent molecular detail at a short length scale, while addressing large-scale 

behaviour and simulating physiologically relevant time scales. These exciting new applications for 

mesoscale modelling are therefore likely to drive new developments in multi-scale simulation methods, 

where systems are simultaneously modelled with different levels of detail, with results from one model 

feeding into another.  
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Figure 1: Coarse-grained (CG) molecular dynamics (MD) simulations of chromatin. A. Schematic 

description of classic MD. All atoms in the system are represented. A set of interaction potentials are 

used to calculate the force exerted on each atom by others. Dynamics are then simulated by solving 

Newton’s second law. B. A simplified description of the system reduces computational overhead. (i) 

Solvent atoms (red and grey in left diagram) are removed, and their effect provided implicitly by adding 

random force “kicks” to the solute atoms (represented by arrows in right diagram, also see Box 1). (ii) 

Coarse-graining is where collections of atoms are replaced by simpler objects. Left diagram shows an all-

atom representation of a DNA molecule; on the right a CG model represents each nucleotide as a bead 

with a patch14. (iii) Chromatin can be coarse-grained at different levels depending on the question being 

asked (see Table 1). Left diagram shows an all-atom representation of two nucleosomes (based on the 

crystal structure from Schalch et al.15). Middle shows a chromatin fibre model where each nucleosome 

is represented by a solid body (modified from Schlick et al.16), whilst the right-hand diagram shows a 

bead-chain model where the internal structure of the fibre is not resolved.  

Figure 2: Common models for understanding chromosome organisation. A. Left: Diffusing protein 

bridges stabilize loops and domains in chromatin or DNA, leading to bridging induced attraction (even in 

the absence of protein-protein interactions). Right top: specific patterns of binding sites on chromatin 

lead to domains and compartments (predicting Hi-C maps from protein binding data). Right bottom: ATP-

driven chemical reactions altering bridging affinity lead to clusters with dynamics similar to nuclear 

bodies. B. The loop extrusion model26,27 explains chromatin loop domains and the CTCF motif 

directionality bias. Extrusion could be an active “motor” effect, or diffusive28 and a similar mechanism 

might drive chromosome compaction during mitosis29. 

Figure 3: A gene locus model: the highly predictive heteromorphic polymer model (HiP-HoP)42. A. 

Schematic showing the HiP-HoP model ingredients – a variable thickness fibre is combined with diffusing 

bridges and loop extrusion. B-C. This model was used to study the Pax6 locus in three cell lines where 

Pax6 is expressed at different levels; it predicts both population level chromatin interactions (Capture-

C) and single cell microscopy (fluorescence in situ hybridization). Further insight can be gained by a more 

detailed study of the structures predicted by the simulations, or by editing the input data to perform in 

silico mechanistic experiments. 
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Box 1: Langevin dynamics for modelling molecular motion 

As detailed in the text and in Fig. 1, running a molecular dynamics simulation essentially boils down to 

solving Newton’s second law (the “equation of motion” or 𝐹 = 𝑚𝑎) for each atom (or coarse-grained 

(CG) object) in the system. To simplify the simulations the full details of the solvent can be neglected – 

a common scheme for doing this is Langevin dynamics, in which the effect of the solvent is approximated 

by adding two new forces to the equation of motion. Here we look at this in more detail. The equation 

of motion for atom 𝑖 is 

𝑚
𝑑'𝒓)
𝑑𝑡' = 𝑭) − 	𝜉	

𝑑𝒓)
𝑑𝑡 + 06𝜉𝑘3𝑇𝜼)

(𝑡), 

where 𝒓)  is the vector position in space of atom 𝑖. The left-hand side of the equation is mass times 

acceleration (the second derivative of position with respect to time). The three terms on the right are 

the forces experienced by atom 𝑖, and discussed below. To perform a simulation, this equation is solved 

numerically – by imagining that time evolves in discrete steps, we calculate the forces on the atom at 

one time point, and this equation tells us how those lead to a change in the velocity and position of the 

atom at the next time point. Each of the simulation software packages mentioned in the main text 

essentially solves this equation for all of the atoms (or CG objects) in the system. 

The three force terms: 

𝑭)   This is the force experienced by “atom” (or bead) 𝑖 due to interactions with all other atoms 

in the system. For an atomistic simulation this is found from a complex set of interaction 

potentials derived from quantum chemistry; for a CG simulation it may be a set of simplified 

phenomenological potentials. For a typical CG polymer model, interactions could include a 

potential to keep beads connected in a chain, a potential preventing beads from overlapping 

in space, and a potential giving rise to a polymer bending stiffness.  This term could also 

include any external force applied on bead 𝑖.  
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−	𝜉	 9𝒓:
9;

 This is the first of two terms which approximate the effects of the solvent. It represents the 

viscous drag experienced by the bead as it moves, which is proportional (and in the opposite 

direction) to its velocity; 𝜉 is a “friction” parameter related to the viscosity of the fluid. 

06𝜉𝑘3𝑇	𝜼)(𝑡) This second solvent term approximates thermal “jostling” due to solvent molecules. The 

symbol 𝜼)(𝑡) represents a random “kick” of force bead 𝑖 receives at time 𝑡. There is a well-

defined mathematical description of this “noise”, but in a simulation context it amounts to 

generating a random number at each time step – which introduces stochasticity. The pre-

factor ensures that the equation obeys the fluctuation dissipation theorem: in the context of 

Brownian motion there is a relationship between the viscous drag experienced by an object 

being pulled through a fluid (dissipation) and its diffusive motion (fluctuations). 

This simple scheme neglects affects like hydrodynamics interactions (where fluid flows set up by motion 

of one object result in forces on another). Including these would require significant computational 

overhead, and commonly it is thought that they should not play a big role in the densely packed nuclear 

environment. 
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Box 2: Practicalities of Polymer Simulations 

As detailed in the main text, most polymer-based molecular dynamics (MD) simulations of chromatin 

are performed using general-purpose codes. Common software packages include: LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator48) which is optimized for use on multicore computer 

clusters and is an adaptable and expandable code written in C++; HOOMD49, which uses the Python 

scripting language and is optimised to run on GPUs; and ESPResSo (Extensible Simulation Package for 

Research on Soft Matter50), which also uses Python and was developed for soft matter physics. These 

packages come with extensive documentation, and tutorials are often a good starting point for new users 

(e.g., see cbrackley.github.io/simple_lammps_tutorial).  The codes perform the simulations, and output 

“trajectories”, i.e. details of the positions of atoms (or CG objects) as a function of time; since an implicit 

solvent simulation is stochastic, many such simulations can be performed to generate an ensemble of 

trajectories (representing e.g. a population of cells). Typically, users write further programs or scripts to 

take measurements from these trajectories which are compared to experimental measurements (e.g. 

one might measure the separation of CG objects, diffusion constants, or how often two objects are found 

together within a population of trajectories). Other software tools are used to visualise trajectories 

including Visual Molecular Dynamics51 (VMD), a popular tool for generating images and animations. 

All of the codes mentioned can be compiled to run on any standard Unix-based system (e.g. Mac or 

Linux). Though most software can run on any size of machine, from laptop or desktop up to large multi-

core supercomputers, the size and scale of most studies necessitates use of multi-core machines (or 

alternative architectures like GPUs or other coprocessors). A typical simulation-based study might need 

thousands of CPU hours-worth of compute time and generate GBs of data. This requirement for 

specialist high-performance computing hardware means that these simulations should be viewed as “in 

silico experiments” in that – just as a wet-lab based project – specialist equipment, expertise, technicians 

and consumables (here compute time and data storage) are required.   
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Table 1. Table showing how different coarse-grained polymer simulation models can be, or have been, 

used to study different biological questions. Different applications typically require models with different 

levels of detail, and this table provides a list of relevant models (although not exhaustive) for a set of 

specific biological questions.  We separate “mechanistic” models, which are used to test hypothesis on 

underlying mechanisms, and “inverse” models, where data are used to, e.g., infer chromatin structures 

consistent with these. 

Mechanistic (forward) models: 

Aim Examples 

Understand microscopic DNA 

properties, in vitro 

experiments, or 

biotechnology applications. 

These often involve CG models of DNA which resolve the DNA double strands and superhelical 

structure, e.g., the oxDNA model17, or three-spheres-per-nucleotide (3SPN) model52. These can be used 

to study supercoiling14, DNA melting, and DNA-protein interactions. Larger systems can be treated 

using simpler models which track twist deformations without resolving individual DNA strands53. 

Understand chromatin 

structure at the nucleosome 

level. 

Detailed CG models based on nucleosome crystal structures can be used to simulate small fibres18,54. 

Simpler models representing nucleosomes as disks or spheres have been used to simulate, e.g. in vitro 

nucleosome unwrapping55, chromatin reconstitution56, or micro-domains in yeast57. 

Understand mechanisms of 

chromosome compartments 

and domains. 

Simple bead-and-spring polymer models for chromatin (where nucleosomes are not resolved) can be 

used to investigate mechanisms for the formation of compartments and domains in, e.g. Drosophila32, 

mouse58, and humans25. 

Understand mechanisms for 

chromosome loops and loop 

domains. 

Simple coarse-grained bead-and-spring polymer models can be used to study these questions. On the 

basis of such studies, several different mechanisms have been put forward for the formation of cohesin 

and CTCF mediated chromatin loops, and loop domains. These include supercoiling59, and loop 

extrusion26–29. 

Predict the detailed structure 

of gene loci 

As well as helping us to understand mechanisms, simple coarse-grained bead-and-spring polymer 

models can also be predictive, using some experimental data as an input. Unlike the inverse models 

detailed below, they do not involve fitting. The HiP-HoP model41,42 is an example: data on DNA 

accessibility is an input, and simulated Hi-C/Capture-C is the output (see also (60)). 

Understand chromosome 

organisation at the whole 

nucleus level 

By reducing the level of detail (e.g. representing large chromosome regions as a single bead), whole 

chromosomes20,21, or even whole nuclei can be simulated. This has been used, e.g. to study the effect 

of interactions between chromatin and the nuclear lamina46,47. 

Inverse Models: 

Aim Examples Input data 

Generate in silico 

configurations of a gene 

locus, or whole chromosome 

consistent with 3C-based 

data. 

Two approaches to reconstruct of chromosome configurations from data are restraint-

based and polymer-based models. Examples of the former include the TADbit software, 

which has been used to reconstruct gene loci in mammalian cells12,61; similar methods 

have been applied to reconstruct whole yeast nuclei62. In polymer-based methods, 

iterative parameter determination has been combined with both Monte Carlo10 and 

Hi-C, 5C or  

single cell 

Hi-C  
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Molecular Dynamics simulations11,63  to generate structures from 5C and Hi-C data. By 

reducing model resolution, whole human chromosomes, or even whole nuclei can be 

modeled, e.g. to reconstruct configurations from single cell Hi-C data64. 

Predict the effect of genome 

rearrangements 

In some versions of the above models, once parameters are generated from one Hi-C 

data set, they can be used to make predictions about the effect of genome 

rearrangements63, or cell differentiation11.  

Hi-C of the 

“wild type” 
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