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Abstract We study coarse pattern formation in a cellular automaton modelling a
spatially-extended stochastic neural network. Themodel, originally proposed byGong
and Robinson (Phys Rev E 85(5):055,101(R), 2012), is known to support stationary
and travelling bumps of localised activity. We pose the model on a ring and study the
existence and stability of these patterns in various limits using a combination of ana-
lytical and numerical techniques. In a purely deterministic version of the model, posed
on a continuum, we construct bumps and travelling waves analytically using standard
interface methods from neural field theory. In a stochastic version with Heaviside fir-
ing rate, we construct approximate analytical probability mass functions associated
with bumps and travelling waves. In the full stochastic model posed on a discrete lat-
tice, where a coarse analytic description is unavailable, we compute patterns and their
linear stability using equation-free methods. The lifting procedure used in the coarse
time-stepper is informed by the analysis in the deterministic and stochastic limits. In
all settings, we identify the synaptic profile as a mesoscopic variable, and the width
of the corresponding activity set as a macroscopic variable. Stationary and travelling
bumps have similar meso- and macroscopic profiles, but different microscopic struc-
ture, hencewe propose lifting operators which usemicroscopicmotifs to disambiguate
them. We provide numerical evidence that waves are supported by a combination of
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high synaptic gain and long refractory times, while meandering bumps are elicited by
short refractory times.

Keywords Multiple scale analysis · Mathematical neuroscience · Refractoriness ·
Spatio-temporal patterns · Equation-free modelling · Markov chains

Mathematics Subject Classification 37N25 · 34E13 · 35B34

1 Introduction

In the past decades, single-neuron recordings have been complemented by multi-
neuronal experimental techniques, which have provided quantitative evidence that the
cells forming the nervous systems are coupled both structurally (Braitenberg andSchüz
1998) and functionally (for a recent review, see Yuste (2015) and references therein).
An important question in neuroscience concerns the relationship between electrical
activity at the level of individual neurons and the emerging spatio-temporal coher-
ent structures observed experimentally using local field potential recordings (Einevoll
et al. 2013), functional magnetic resonance imaging (Heuvel and Hulshoff Pol 2010)
and electroencephalography (Nunez and Srinivasan 2006).

There exist a wide variety of models describing activity at the level of an indi-
vidual neuron (Izhikevich 2007; Ermentrout and Terman 2010), and major research
efforts in theoretical and computational neuroscience are directed towards coupling
neurons in large-dimensional neural networks, whose behaviour is studied mainly via
direct numerical simulations (Izhikevich andEdelman 2008; Fairhall andSompolinsky
2014).

A complementary approach, dating back to Wilson and Cowan (1972, 1973) and
Amari (1975, 1977), foregoes describing activity at the single neuron level by repre-
senting averaged activity across populations of neurons. These neural field models are
nonlocal, spatially-extended, excitable pattern-forming systems (Ermentrout 1998)
which are often analytically tractable and support several coherent structures such
as localised radially-symmetric states (Werner and Richter 2001; Laing et al. 2002;
Laing and Troy 2003; Bressloff and Kilpatrick 2011; Faye et al. 2013), localised
patches (Laing and Troy 2003; Rankin et al. 2014; Avitabile and Schmidt 2015), pat-
terns on lattices with various symmetries (Ermentrout and Cowan 1979; Bressloff
et al. 2001), travelling bumps and fronts (Ermentrout and McLeod 1993; Bressloff
2014), rings (Owen et al. 2007; Coombes et al. 2012), breathers (Folias and Bressloff
2004, 2005; Folias and Ermentrout 2012), target patterns (Coombes et al. 2013), spi-
ral waves (Laing 2005) and lurching waves (Golomb and Ermentrout 1999; Osan and
Ermentrout 2001; Wasylenko et al. 2010) [for comprehensive reviews, we refer the
reader to Bressloff 2012, 2014].

Recent studies have analysed neural fields with additive noise (Hutt et al. 2008;
Faugeras et al. 2009; Kuehn and Riedler 2014), multiplicative noise (Bressloff and
Webber 2012), or noisy firing thresholds (Brackley and Turner 2007), albeit these
models are still mostly phenomenological. Even though several papers derive contin-
uum neural fields frommicroscopicmodels of coupled neurons (Jirsa andHaken 1997;
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Macroscopic coherent structures in a stochastic neural network 887

Bressloff 2009, 2010; Baladron et al. 2012), the development of a rigorous theory of
multi-scale brain models is an active area of research.

Numerical studies of networks based on realistic neural biophysical models rely
almost entirely on brute-force Monte Carlo simulations (for a very recent, remarkable
example, we refer the reader to (Markram et al. 2015)).With this direct numerical sim-
ulation approach, the stochastic evolution of each neuron in the network is monitored,
resulting in huge computational costs, both in terms of computing time and memory.
From this point of view, multi-scale numerical techniques for neural networks present
interesting open problems.

When few clusters of neurons with similar properties form in the network, a
significant reduction in computational costs can be obtained by population density
methods (Omurtag et al. 2000; Haskell et al. 2001), which evolve probability den-
sity functions of neural subpopulations, as opposed to single neuron trajectories. This
coarse-graining technique is particularly effective when the underlying microscopic
neuronal model has a low-dimensional state space (such as the leaky integrate-and-fire
model) but its performance degrades for more realistic biophysical models. Develop-
ments of the population density method involve analytically derived moment closure
approximations (Cai et al. 2004; Ly and Tranchina 2007). Both Monte Carlo simu-
lations and population density methods give access only to stable asymptotic states,
which may form only after long-transient simulations.

An alternative approach is offered by equation-free (Kevrekidis et al. 2003;
Kevrekidis and Samaey 2009) and heterogeneous multiscale methods (Weinan and
Engquist 2003;Weinan et al. 2007),which implementmultiple-scale simulations using
an on-the-fly numerical closure approximations. Equation-free methods, in particular,
are of interest in computational neuroscience as they accelerate macroscopic simu-
lations and allow the computation of unstable macroscopic states. In addition, with
equation-free methods, it is possible to perform coarse-grained bifurcation analysis
using standard numerical bifurcation techniques for time-steppers (Tuckerman and
Barkley 2000).

The equation-free framework (Kevrekidis et al. 2003;Kevrekidis and Samaey 2009)
assumes the existence of a closed coarse model in terms of a few macroscopic state
variables. The model closure is enforced numerically, rather than analytically, using a
coarse time-stepper: a computational procedure which takes advantage of knowledge
of the microscopic dynamics to time-step an approximated macroscopic evolution
equation. A single coarse time step from time t0 to time t1 is composed of three stages:
(i) lifting, that is, the creation ofmicroscopic initial conditions that are compatible with
the macroscopic states at time t0; (ii) evolution, the use of independent realisations
of the microscopic model over a time interval [t0, t1]; (iii) restriction, that is, the
estimation of the macroscopic state at time t1 using the realisations of the microscopic
model.

While equation-free methods have been employed in various contexts (see
Kevrekidis and Samaey (2009) and references therein) and in particular in neuro-
science applications (Laing 2006; Laing et al. 2007, 2010; Spiliotis and Siettos 2011,
2012; Laing and Kevrekidis 2015), there are still open questions, mainly related to
how noise propagates through the coarse time stepper. A key aspect of every equation-
free implementation is the lifting step. The underlying lifting operator, which maps a
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macroscopic state to a set of microscopic states, is generally non-unique, and lifting
choices have a considerable impact on the convergence properties of the resulting
numerical scheme (Avitabile et al. 2014). Even though the choice of coarse variables
can be automatised using data-mining techniques, as shown in several papers by Laing,
Kevrekidis and co-workers (Laing 2006; Laing et al. 2007, 2010), the lifting step is
inherently problem dependent.

The present paper explores the possibility of using techniques from neural field
theory to inform the coarse-grained bifurcation analysis of discrete neural networks.
A successful strategy in analysing neural fields is to replace the models’ sigmoidal
firing rate functions with Heaviside distributions (Bressloff 2012, 2014). Using this
strategy, it is possible to relate macroscopic observables, such as bump widths or wave
speeds, to biophysical parameters, such as firing rate thresholds. Under this hypothesis,
a macroscopic variable suggests itself, as the state of the system can be constructed
entirely via the loci of points in physical space where the neural activity attains the
firing-rate threshold value. In addition, there exists a closed (albeit implicit) evolution
equation for such interfaces (Coombes et al. 2012).

In this study, we show how the insight gained in the Heaviside limit may be used to
perform coarse-grained bifurcation analysis of neural networks, even in cases where
the network does not evolve according to an integro-differential equation. As an illus-
trative example, we consider a spatially-extended neural network in the form of a
discrete time Markov chain with discrete ternary state space, posed on a lattice. The
model is an existing cellular automaton proposed byGong and Robinson (2012), and it
has been related to neuroscience in the context of relevant spatio-temporal activity pat-
terns that are observed in cortical tissue. In spite of its simplicity, the model possesses
sufficient complexity to support rich dynamical behaviour akin to that produced by
neural fields. In particular, it explicitly includes refractoriness and is one of the simplest
models capable of generating propagating activity in the form of travelling waves. An
important feature of this model is that the microscopic transition probabilities depend
on the local properties of the tissue, as well as on the global synaptic profile across the
network. The latter has a convolution structure typical of neural field models, which
we exploit to use interface dynamics and define a suitable lifting strategy.

We initially study the model in simplifying limits in which an analytical (or semi-
analytical) treatment is possible. In these cases, we construct bump and wave solutions
and compute their stability. This analysis follows the standard Amari framework, but
is here applied directly to the cellular automaton. We then derive the corresponding
lifting operators, which highlight a critical importance of the microscopic structure of
solutions: one of the main results of our analysis is that, since macroscopic stationary
and travelling bumps coexist and have nearly identicalmacroscopic profiles, a standard
lifting is unable to distinguish between them, thereby preventing coarse numerical
continuation. These solutions, however, possess different microstructures, which are
captured by our analysis and subsequently by our lifting operators. This allows us
to compute separate solution branches, in which we vary several model parameters,
including those associated with the noise processes.

The manuscript is arranged as follows: In Sect. 2 we outline the model. In Sect. 3,
we simulate the model and identify the macroscopic profiles in which we are inter-
ested, together with the coarse variables that describe them. In Sect. 4, we define a
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Macroscopic coherent structures in a stochastic neural network 889

deterministic version of the full model and lay down the framework for analysing
it. In Sects. 5 and 6, we respectively construct bump and wave solutions under the
deterministic approximation and compute the stability of these solutions. In Sect. 7,
we define and construct travelling waves relaxing the deterministic limit. In Sects. 8.1
and 8.2, we provide the lifting steps for use in the equation-free algorithm for the bump
and wave respectively. In Sect. 9, we briefly outline the continuation algorithm and in
Sect. 10, we show the results of applying this continuation to our system. Finally, in
Sect. 11, we make some concluding remarks.

2 Model description

2.1 State variables for continuum and discrete tissues

In this section, we present a modification of a model originally proposed by Gong
and Robinson (2012). We consider a one-dimensional neural tissue X ⊂ R. At each
discrete time step t ∈ Z, a neuron at position x ∈ X may be in one of three states: a
refractory state (henceforth denoted as−1), a quiescent state (0) or a spiking state (1).
Our state variable is thus a function u : X× Z → U, where U = {−1, 0, 1}. We pose
the model on a continuum tissue S = R/2LZ or on a discrete tissue featuring N + 1
evenly spaced neurons,

SN = {xi }Ni=0, xi = −L + i2L/N ∈ [−L , L].

We will often alternate between the discrete and the continuum setting, hence we
will use a unified notation for these cases. We use the symbol X to refer to either S
or SN , depending on the context. Also, we use u( · , t) to indicate the state variable in
both the discrete and the continuum case: u( · , t) will denote a step function defined
on S in the continuum case and a vector inUN with components u(xi , t) in the discrete
case. Similarly, we write

∫
X
u(x) dx to indicate

∫
S
u(x) dx or 2L/N

∑N
j=0 u(x j ).

2.2 Model definition

We use the term stochastic model when the Markov chain model described below is
posed on SN . An example of a state supported by the stochastic model is given in
Fig. 1a.

In the model, neurons are coupled via a translation-invariant synaptic kernel, that
is, we assume the connection strength between two neurons to be dependent on their
mutual Euclidean distance. In particular, we prescribe that short range connections are
excitatory, whilst long-range connections are inhibitory. To model this coupling, we
use a standard Mexican hat function,

w : X → R, x �→ A1
√
B1/L exp(−4B1x

2) − A2
√
B2/L exp(−4B2x

2), (1)

and denote by W its periodic extension.
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(b)(a)

1

−10
1 − p

1

p

u(x)

q(v)(xi)

1 − q(v)(xi)

J(u)(x)
q = f ◦ J

Fig. 1 a Example of a state u(x) ∈ U
N and corresponding synaptic profile J (u)(x) ∈ R

N in a stochastic
network of 1024 neurons. b Schematic of the transition kernel for the network (see also Eqs. (5)–(7)). The
conditional probability of the local variable u(xi , t + 1) depends on the global state of the network at time
t , via the function q = f ◦ J , as seen in (7)

In order to describe the dynamics of the model, it is useful to partition the tissue X
into the 3 pullback sets

Xu
k (t) = {x ∈ X : u(x, t) = k}, k ∈ U, t ∈ Z, (2)

so that we can write, for instance, Xu
1 (t) to denote the set of neurons that are firing

at time t (and similarly for Xu−1 and Xu
0 ). Where it is unambiguous, we shall simply

write Xk or Xk(t) in place of Xu
k (t).

The synaptic input to a cell at position xi is given by a weighted sum of inputs from
all firing cells. Using the synaptic kernel (1) and the partition (2), the synaptic input
is then modelled as

J : X × Z → R, (x, t) �→ κ

∫

X

W (x − y)1X1(t)(y) dy = κ

∫

X1(t)
W (x − y) dy,

(3)
where κ ∈ R+ is the synaptic gain, which is common for all neurons and 1X is the
indicator function of a set X .

Remark 1 (Dependence of J on u) Since X1 depends on the state variable u, so
does the synaptic input (3). Where necessary, we will write J (u)(x, t) to highlight the
dependence on u. We refer the reader to Fig. 1 for a concrete example of synaptic
profile.

The firing probability associated to a quiescent neuron is linked to the synaptic
input via the firing rate function

f : R → R, I �→ 1

1 + exp[−β(I − h)] , (4)

whose steepness and threshold are denoted by the positive real numbers β and h,
respectively. We are now ready to describe the evolution of the stochastic model,
which is a discrete-time Markov process with finite state space U

N and transition
probabilities specified as follows: for each xi ∈ SN and t ∈ Z
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Macroscopic coherent structures in a stochastic neural network 891

Pr
[
u(xi , t + 1) = −1

∣
∣u(x, t) = v(x)

] =

⎧
⎪⎨

⎪⎩

1 − p if v(xi ) = −1,

1 if v(xi ) = 1,

0 otherwise,

(5)

Pr
[
u(xi , t + 1) = 0

∣
∣u(x, t) = v(x)

] =

⎧
⎪⎨

⎪⎩

p if v(xi ) = −1,

1 − f (J (v))(xi ) if v(xi ) = 0,

0 otherwise,

(6)

Pr
[
u(xi , t + 1) = 1

∣
∣u(x, t) = v(x)

] =
{
f (J (v))(xi ) if v(xi ) = 0,

0 otherwise,
(7)

where p ∈ (0, 1]. We give a schematic representation of the transitions of each neuron
in the network in Fig. 1b. We remark that conditional probability of the local variable
u(xi , t+1) depends on the global state of the network at time t , via the function f ◦ J .

The model described by (1)–(7), complemented by initial conditions, defines a
stochastic evolution map that we will formally denote as

u(x, t + 1) = ϕ(u(x, t); γ ), (8)

where γ = (κ, β, h, p, A1, A2, B1, B2) is a vector of control parameters.

Remark 2 (Microscopic, mesoscopic and macroscopic descriptions) We will hence-
forth use the terms “microscopic”, “mesoscopic” and “macroscopic” to refer to
different state variables or model descriptions. Examples of these three state variables
appear together in Figs. 2, 3 and 4 in Sect. 3, and we introduce them briefly here:

Microscopic level Model (8) will be referred to as microscopic model and its solu-
tions at a fixed time t as microscopic states. We will use these
terms also when p = 1 and β → ∞, that is, when the evolution
Eq. (8) is deterministic.

Mesoscopic level In Remark 1, we associated to each microscopic state u a corre-
sponding synaptic profile J , which is smooth, even when the tissue
is discrete. We will not seek an evolution equation for the variable
J , as the corresponding dynamical system would not reprent a
reduction of themicroscopic one. However, wewill use J to bridge
between the microscopic and macroscopic model descriptions;
we therefore refer to J as a mesoscopic variable (or mesoscopic
state).

Macroscopic level Much of the present paper aims to show that, for the model under
consideration, there exists a high-level model description, in the
spirit of interfacial dynamics for neural fields (Bressloff 2012;
Coombes et al. 2012; Bressloff 2014). The state variables for
this level are points on the tissue where J (u)(x, t) attains the fir-
ing rate threshold h. We will denote these threshold crossings as
{ξi (t)} and we will discuss (reduced) evolution equations in terms
of ξi (t). The variables {ξ(t)} are therefore referred to as macro-
scopic variables and the corresponding evolution equations as the
macroscopic model.
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(a)

x−π π

u(x, 50)
J(x, 50)

5

0

0

t

0

t

100100

0−1 3.5

(b)

x− ππ x− ππ

ξ1 ξ2

J
−1 0 1

u

Fig. 2 Bump obtained via time simulation of the stochastic model for (x, t) ∈ [−π, π ] × [0, 100]. a The
microscopic state u(x, t) (left) attains the discrete values −1 (blue), 0 (green) and 1 (yellow). The corre-
sponding synaptic profile J (x, t) is a continuous function. A comparison between J (x, 50) and u(x, 50) is
reported on the right panel, where we also mark the interval [ξ1, ξ2] where J is above the firing threshold
h. b Space-time plots of u and J . Parameters as in Table 1

3 Microscopic states observed via direct simulation

In this section, we introduce a few coherent states supported by the stochastic model.
The main aim of the section is to show examples of bumps, multiple bumps and trav-
elling waves, whose existence and stability properties will be studied in the following
sections. In addition, we give a first characterisation of the macroscopic variables of
interest and link them to the microscopic structure observed numerically.

3.1 Bumps

In a suitable region of parameter space, the microscopic model supports bump solu-
tions (Qi and Gong 2015) in which the microscopic variable u(x, t) is nonzero only
in a localised region of the tissue. In this active region, neurons attain all values in
U. In Fig. 2, we show a time simulation of the microscopic model with N = 1024
neurons. At each time t , neurons are in the refractory (blue), quiescent (green) or spik-
ing (yellow) state. We prescribe the initial condition by setting u(xi , 0) = 0 outside
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(a)

0

t

0

t

100100

(b)

x

0−2 5
J

−2π 2π x−2π 2π

−2

0

2

−2π 2πξ1 ξ2 ξ7 ξ8. . .

−1 0 1
u

Fig. 3 Multiple bump solution obtained via time simulation of the stochastic model for (x, t) ∈
[−2π, 2π ] × [0, 100]. a The microscopic state u(x, t) in the active region (left) is similar to the one
found for the single bump (see Fig. 2a). A comparison between J (x, 50) and u(x, 50) is reported on the
right panel, where we also mark the intervals [ξ1, ξ2], . . . , [ξ7, ξ8] where J is above the firing threshold h.
b Space-time plots of u and J . Parameters are as in Table 1

of a localised region, in which u(xi , 0) are sampled randomly from U. After a short
transient, a stochastic microscopic bump is formed. As expected due to the stochastic
nature of the system (Kilpatrick andErmentrout 2013), the active regionwanderswhile
remaining localised. A space-time section of the active region reveals a characteristic
random microstructure (see Fig. 2a).

By plotting J (x, t), we see that the active region is well approximated by the
portion of the tissue X≥ = [ξ1, ξ2] where J lies above the threshold h. A quantitative
comparison between J (x, 50) and u(x, 50) is made in Fig. 2a. We interpret J as
a mesoscopic variable associated with the bump, and ξ1 and ξ2 as corresponding
macroscopic variables (see also Remark 2).

3.2 Multiple-bumps solutions

Solutions with multiple bumps are also observed by direct simulation, as shown in
Fig. 3. The microstructure of these patterns resembles the one found in the single
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0

5

0−2 5

(a)

(b)

50

0

t

50

0

t

−π π

J

J(x, 45)

u(x, 45)

x− ππ x− ππ

ξ1 ξ2
x

−1 0 1
u

Fig. 4 Travelling wave obtained via time simulation of the stochastic model for (x, t) ∈ [−π, π ]×[0, 50].
a The microscopic state u(x, t) (left) has a characteristic microstructure, which is also visible on the right
panel, where we compare J (x, 45) and u(x, 45). As in the other cases, we mark the interval [ξ1, ξ2] where
J is above the firing threshold h. b Space-time plots of u and J . Parameters are as in Table 1

bump case (see Fig. 3a). At the mesoscopic level, the set for which J lies above the
threshold h is now a union of disjoint intervals [ξ1, ξ2], . . . , [ξ7, ξ8]. The number of
bumps of the pattern depends on the width of the tissue; the experiment of Fig. 3 is
carried out on a domain twice as large as that of Fig. 2. The examples of bump and
multiple-bump solutions reported in these figures are obtained for different values of
the main control parameter κ (see Table 1), however, these states coexist in a suitable
region of parameter space, as will be shown below.

3.3 Travelling waves

Further simulation shows that the model also supports coherent states in the form of
stochastic travelling waves. In two spatial dimensions, the system is known to support
travelling spots (Gong and Robinson 2012; Qi and Gong 2015). In Fig. 4, we show a
time simulation of the stochastic model with initial condition
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Table 1 Parameter values for which the stochastic model supports a bump (Fig. 2), a multiple-bump
solution (Fig. 3) and a travelling wave (Fig. 4).

Experiment κ β h p A1 A2 B1 B2 N L

Bump 30 5 0.9 0.7 5.25 5 0.2 0.3 1024 π

Multiple bump 60 5 0.9 0.7 5.25 5 0.2 0.3 2058 2π

Travelling wave 30 ∞ 1.0 0.4 5.25 5 0.2 0.3 1024 π

The value∞ for the parameter β indicates that a Heaviside firing rate has been used in place of the sigmoidal
function (4)

u(x, 0) =
∑

k∈U
k1Xk (x) with partition

X−1 = [−1.5,−0.5),

X0 = [−π,−1.5) ∪ [0.5, π),

X1 = [−0.5, 0.5).

In passing, we note that the state of the network at each discrete time t is defined
entirely by the partition {Xk} of the tissue; we shall often use this characterisation in
the reminder of the paper.

In the direct simulation of Fig. 4, the active region moves to the right and, after
just 4 iterations, a travellingwave emerges. Themicroscopic variable, u(x, t), displays
stochastic fluctuations which disappear at the level of themesoscopic variable, J (x, t),
giving rise to a seemingly deterministic travelling wave. A closer inspection (Fig. 4a)
reveals that the state can still be described in terms of the active region [ξ1, ξ2] where
J is above h. However, the travelling wave has a different microstructure with respect
to the bump. Proceeding from right to left, we observe:

1. A region of the tissue ahead of the wave, x ∈ (ξ2, π), where the neurons are in the
quiescent state 0 with high probability.

2. An active region x ∈ [ξ1, ξ2], split in three subintervals, each of approximate
width (ξ2 − ξ1)/3, where u attains with high probability the values 0, 1 and −1
respectively.

3. A region at the back of the wave, x ∈ [−π, ξ1), where neurons are either quiescent
or refractory. We note that u = 0 with high probability as x → −π whereas, as
x → ξ1, neurons are increasingly likely to be refractory, with u = −1.

A further observation of the space-time plot of u in Fig. 4b reveals a remarkably
simple advection mechanism of the travelling wave, which can be fully understood
in terms of the transition kernel of Fig. 1b upon noticing that, for sufficiently large
β, qi = f (J (u))(xi ) ≈ 0 everywhere except in the active region, where qi ≈ 1.
In Fig. 5, we show how the transition kernel simplifies inside and outside the active
region and provide a schematic of the advectionmechanism. For an idealised travelling
wave profile at time t , we depict 3 subintervals partitioning the active region (shaded),
together with 2 adjacent intervals outside the active region. Each interval is then
mapped to another interval, following the simplified transition rules sketched inFig. 5a:
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(a) (b)

1

−10
1 − pp

1

−10
1 − pp

x ∈ [ξ1, ξ2]

x ∈ [ξ1, ξ2]

time t

ξ1(t) ξ2(t)

time t + 1

ξ2(t + 1)ξ1(t + 1)

01−1
0

−1
1 0

01 0−1
0

−1
0

0

−1

Fig. 5 Schematic of the advection mechanism for the travelling wave state. Shaded areas pertain to the
active region [ξ1(t), ξ2(t)], non-shaded areas to the inactive regionX\[ξ1(t), ξ2(t)]. a In the active (inactive)
region, qi = f (J (u))(xi ) ≈ 1 (qi ≈ 0), hence the transition kernel (5)–(7) can be simplified as shown. b
At time t the travelling wave has a profile similar to the one in Fig. 4, which we represent in the proximity
of the active region. We depict 5 intervals of equal width, 3 of which form a partition of [ξ1(t), ξ2(t)]. Each
interval is mapped to another interval at time t + 1, following the transition rules sketched in (a). In one
discrete step, the wave progresses with positive speed: so that J (x, t + 1) is a translation of J (x, t)

1. At the front of the wave, to the right of ξ2(t), neurons in the quiescent state 0
remain at 0 (rules for x /∈ [ξ1, ξ2]).

2. Inside the active region, to the left of ξ2(t), we follow the rules for x ∈ [ξ1, ξ2]
in a clockwise manner: neurons in the quiescent state 0 spike, hence their state
variable becomes 1; similarly, spiking neurons become refractory. Of the neurons
in the refractory state, those being the ones nearest ξ1(t), a proportion p become
quiescent, while the remaining ones remain refractory.

123



Macroscopic coherent structures in a stochastic neural network 897

(a)

(b)

(c)

0 100t
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3.5

Δ

0.6
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0 100t

Δ2

Δ1 Δ3

Δ4

0 t
1.2

1.6

Δ

Δi

50

Fig. 6 Width of the active regions Δi = ξ2i − ξ2i−1 for the patterns in Figs. 2, 3 and 4. a Bump, for which
i = 1. b Multiple Bump, i = 1, . . . , 4. c Travelling wave, i = 1. In all cases, the patterns reach a coarse
equilibrium state after a short transient

3. At the back of the wave, to the left of ξ1(t), the interval contains a mixture of
neurons in states 0 and−1. The former remain at 0 whilst, of the latter, a proportion
p transition into state 0, with the rest remaining at−1 (rules for x /∈ [ξ1, ξ2]). From
this argument, we see that the proportion of refractory neurons in the back of the
wave must decrease as ξ → −π .

The resulting mesoscopic variable J (x, t + 1) is a spatial translation by (ξ2(t) −
ξ1(t))/3 of J (x, t). We remark that the approximate transition rules of Fig. 5a are valid
also in the case of a bump, albeit the corresponding microstructure does not allow the
advection mechanism described above.

3.4 Macroscopic variables

The computations of the previous sections suggest that, beyond the mesoscopic vari-
able, J (x), coarser macroscopic variables are available to describe the observed
patterns. In analogy with what is typically found in neural fields with Heaviside fir-
ing rate (Amari 1977; Bressloff 2014; Coombes and Owen 2004), the scalars {ξi }
defining the active region X≥ = ∪i [ξ2i−1, ξ2i ], where J is above h, seem plausible
macroscopic variables. This is evidenced not only by Figs. 2, 3 and 4, but also from
the schematic in Fig. 5b, where the interval [ξ1(t), ξ2(t)] is mapped to a new interval
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898 D. Avitable, K. C. A. Wedgwood

[ξ1(t + 1), ξ2(t + 1)] of the same width. To explore this further, we extract the widths
Δi (t) of each sub-interval [ξ2i (t), ξ2i−1(t)] from the data in Figs. 2, 3 and 4, and plot
the widths as a function of t . In all cases, we observe a brief transient, after which
Δi (t) relaxes towards a coarse equilibrium, though fluctuations seem larger for the
bump and multiple bump when compared with those for the wave. In the multiple
bump case, we also notice that all intervals have approximately the same asymptotic
width (see Fig. 6b).

4 Deterministic model

We now introduce a deterministic version of the stochastic model considered in
Sect. 2.2, which is suitable for carrying out analytical calculations. We make the
following assumptions:

1. Continuum neural tissue. We consider the limit of infinitely many neurons and
pose the model on S.

2. Deterministic transitions. We assume p = 1, which implies a deterministic tran-
sition from refractory states to quiescent ones (see Eq. (5)), and β → ∞, which
induces a Heaviside firing rate f (I ) = 	(I − h) and hence a deterministic transi-
tion from quiescent states to spiking ones given sufficiently high input (see Eqs. 4,
6).

In addition to the pullback sets X−1, X0, and X1 defined in (2), we will partition
the tissue into active and inactive regions

X≥(t) = {x ∈ X : J (x, t) ≥ h}, X<(t) = X\X≥(t). (9)

In the deterministicmodel, the transitions (5)–(7) are then replaced by the following
rule

u(x, t + 1) =

⎧
⎪⎨

⎪⎩

−1 if x ∈ X1(t),

0 if x ∈ X−1(t) ∪ (
X0(t) ∩ X<(t)

)
,

1 if x ∈ X0(t) ∩ X≥(t).

(10)

We stress that the right-hand side of the equation above depends on u(x, t), since the
partitions {X−1, X0, X1} and {X<, X≥} do so (see Remark 1).

As we shall see, it is sometimes useful to refer to the induced mapping of the
pullback sets

X−1(t + 1) = X1(t)

X0(t + 1) = X−1(t) ∪ (
X0(t) ∩ X<(t)

)

X1(t + 1) = X0(t) ∩ X≥(t)

. (11)

Henceforth, we will use the term deterministic model and formally write

u(x, t + 1) = Φd(u(x, t); γ ). (12)

for (10), where the partition {Xk}k∈U is defined by (2) and the active and inactive sets
X≥, X< by (9).
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ξm
2ξm

1

η1 η2

Am
3 Am

6 Am
9 Am

3m
. . .

h

Jm(x, η1, η2)

Fig. 7 Schematic of the analytical construction of a bump. A microscopic state whose partition comprises
3m + 2 strips is considered. The microscopic state, which is not an equilibrium of the deterministic system,
has a characteristic width η2−η1, which differs from the width ξm2 −ξm1 of the mesoscopic bump Jm . If we
let m → ∞ while keeping η2 − η1 constant, then Jm tends towards a mesoscopic bump Jb and ξmi → ηi
(see Proposition 1)

5 Macroscopic bump solution of the deterministic model

We now proceed to construct a bump solution of the deterministic model presented
in Sect. 4. In order to do so, we consider a microscopic state with a regular structure,
resulting in a partition, {Xm

k }k , with 3m + 2 strips (see Fig. 7) and then study the limit
m → ∞.

5.1 Bump construction

Starting from two points η1, η2 ∈ S, with η1 < η2, we construct 3m intervals as
follows

Am
i =

[

η1+ i − 1

3m
(η2−η1), η1+ i

3m
(η2−η1)

)

, i = 1, . . . , 3m, m ∈ N. (13)

We then consider states um(x) = ∑
k∈U k1Xm

k
(x), with partitions given by

Xm−1 =
m⋃

j=1

Am
3 j−2, Xm

0 = [−L , η1) ∪ [η2, L)

m⋃

j=1

Am
3 j−1, Xm

1 =
m⋃

j=1

Am
3 j , (14)

and activity set X≥ = [ξm1 , ξm2 ]. We note that, in addition to the 3m strips that form the
active region of the bump, we also need two additional strips in the inactive region to
form a partition of S. In general, {ξmi }i �= {ηi }i , as illustrated in Fig. 7. Applying (10)
or (11), we findΦd(um) �= um , hence um are not equilibria of the deterministic model.
However, these states help us defining amacroscopic bump as a fixed point of a suitably
defined map using the associated mesoscopic synaptic profile

123



900 D. Avitable, K. C. A. Wedgwood

Jm(x, η1, η2) = κ

∫

Xm
1 (η1,η2)

W (x − y) dy, (15)

where we have highlighted the dependence of Xm
1 on η1, η2. The proposition below

shows that there is a well defined limit, Jb, of the mesoscopic profile as m → ∞. We
also have that ξmi → ηi as m → ∞ and that the threshold crossings of the activity set
are roots of a simple nonlinear function.

Proposition 1 (Bump construction) Let W be the periodic extension of the synaptic
kernel (1) and let h, κ ∈ R+. Further, let {Am

i }3mi=1, X
m
1 and Jm be defined as in (13),

(14) and (15), respectively, and let Jb : S3 → R be defined as

Jb(x, η1, η2) = κ

3

∫ η2

η1

W (x − y) dy.

The following results hold

1. Jm(x, η1, η2) → Jb(x, η1, η2) as m → ∞ uniformly in the variable x for all
η1, η2 ∈ S with η1 < η2,

2. If there exists Δ ∈ (0, L) such that 3h = κ
∫Δ

0 W (y) dy, then

Jb(0, 0,Δ) = Jb(Δ, 0,Δ) = h.

Proof We fix η1 < η2 and consider the 2L-periodic continuous mapping x �→
Jb(x, η1, η2), defined on S. We aim to prove that Jm → Jb uniformly in S. We
pose

Im−1(x) =
m∑

j=1

∫

A3 j−2

W (x − y) dy,

Im0 (x) =
m∑

j=1

∫

A3 j−1

W (x − y) dy,

Im1 (x) =
m∑

j=1

∫

A3 j

W (x − y) dy,

for all x ∈ S, m ∈ N. Since the intervals {Am
i }3mi=1 form a partition of [η1, η2) we have

3

κ
Jb(x) = Im−1(x) + Im0 (x) + Im1 (x) for all x ∈ S,m ∈ N. (16)

Since W is continuous on the compact set S, it is also uniformly continuous on S.
Hence, there exists a modulus of continuity ω of W :

ω(r) = sup
p,q∈S

|p−q|≤r

|W (p) − W (q)|, with lim
r→0+ ω(r) = ω(0) = 0.
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We use ω to estimate |Im1 (x) − Im0 (x)| as follows:

|Im1 (x) − Im0 (x)| ≤
m∑

j=1

∣
∣
∣
∣

∫

A3 j

W (x − y) dy −
∫

A3 j−1

W (x − y) dy

∣
∣
∣
∣

=
m∑

j=1

∣
∣
∣
∣

∫ η1+ 3 j
3m (η2−η1)

η1+ 3 j−1
3m (η2−η1)

W (x − y) dy −
∫ η1+ 3 j−1

3m (η2−η1)

η1+ 3 j−2
3m (η2−η1)

W (x − y) dy

∣
∣
∣
∣

=
m∑

j=1

∣
∣
∣
∣

∫ η1+ 3 j
3m (η2−η1)

η1+ 3 j−1
3m (η2−η1)

W (x − y) − W

(

x − y + η2 − η1

3m

)

dy

∣
∣
∣
∣

≤
m∑

j=1

∫ η1+ 3 j
3m (η2−η1)

η1+ 3 j−1
3m (η2−η1)

∣
∣
∣
∣W (x − y) − W

(

x − y + η2 − η1

3m

)∣∣
∣
∣ dy

≤
m∑

j=1

∫ η1+ 3 j
3m (η2−η1)

η1+ 3 j−1
3m (η2−η1)

ω

(
η2 − η1

3m

)

dy

= ω

(
η2 − η1

3m

)
η2 − η1

3
.

We have then |Im1 (x) − Im0 (x)| → 0 as m → ∞ and since ω
(
(η2 − η1)/(3m)

)
is

independent of x , the convergence is uniform. Applying a similar argument, we find
|Im−1(x)− Im0 (x)| → 0 as m → ∞ and using (16), we conclude Im1 , Im0 , Im−1 → Jb/κ
as m → ∞. Since Im1 = Jm/κ , then Jm → Jb uniformly for all x ∈ S and η1, η2 ∈ S

with η1 < η2, that is, result 1 holds true.
By hypothesis Jb(0, 0,Δ) = h and, using a change of variables under the integral

and the fact thatW is even, it can be shown that Jb(Δ, 0,Δ) = h, which proves result
2.

Corollary 1 (Bump symmetries) Let Δ be defined as in Proposition 1, then Jb(x +
δ, δ, δ + Δ) is a mesoscopic bump for all δ ∈ [L ,−Δ + L). Such bump is symmetric
with respect to the axis x = δ + Δ/2.

Proof The assertion is obtained using a change of variables in the integral defining Jb
and noting that W is even. ��

The results above show that, ξmi → ηi as m → ∞, hence we lose the distinction
between width of the microscopic pattern, η2 − η1, and width of the mesoscopic
pattern, ξm2 − ξm1 , in that result 2 establishes Jb(ηi , η1, η2) = h, for η1 = 0, η2 = Δ.
With reference to Fig. 7, the factor 1/3 appearing in the expression for Jb confirms
that, in the limit of infinitely many strips, only a third of the intervals {Am

j } j contribute
to the integral. In addition, the formula for Jb is useful for practical computations as
it allows us to determine the width, Δ, of the bump.

Remark 3 (Permuting intervals Am
i ) A bump can also be found if the partition {Xm

k }
of um is less regular than the one depicted in Fig. 7. In particular, Proposition 1 can be
extended to a more general case of permuted intervals. More precisely, if we consider
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permutations, σ j , of the index sets {3 j−2, 3 j−1, 3 j} for j = 1, . . . ,m and construct
partitions

Xm−1 =
m⋃

j=1

Am
σ j (3 j−2), Xm

0 = [−L , 0) ∪ [Δ, L)

m⋃

j=1

Am
σ j (3 j−1), Xm

1 =
m⋃

j=1

Am
σ j (3 j)

,

then the resulting Jm converges uniformly to Jb as m → ∞. The proof of this result
follows closely the one of Proposition 1 and is omitted here for simplicity.

5.2 Bump stability

Once a bump has been constructed, its stability can be studied by employing standard
techniques used to analyse neural field models (Bressloff 2012). We consider the map

�b : S2 × S
2 → R

2, (ξ, η) �→
[
Jb(ξ1, η1, η2) − h
Jb(ξ2, η1, η2) − h

]

.

and study the implicit evolution

�b(ξ(t + 1), ξ(t)) = 0. (17)

The motivation for studying this evolution comes from Proposition 1, accord-
ing to which the macroscopic bump ξ∗ = (0,Δ) is an equilibrium of (17), that is,
�b(ξ∗, ξ∗) = 0. To determine coarse linear stability, we study how small perturba-
tions of ξ∗ evolve according to the implicit rule (17). We set ξ(t) = ξ∗ + ε̃ξ (t), for
0 < ε � 1 with ξ̃i = O(1) and expand (17) around (ξ∗, ξ∗), retaining terms up to
order ε,

�b(ξ∗ + ε̃ξ (t + 1), ξ∗ + ε̃ξ (t)) = �b(ξ∗, ξ∗) + εDξ�b(ξ∗, ξ∗)̃ξ (t + 1)

+εDξ�b(ξ∗, ξ∗)̃ξ (t).

Using the classical ansatz ξ̃ (t) = λtv, withλ ∈ C and v ∈ S
2, we obtain the eigenvalue

problem

λ

[
v1
v2

]

= 1

W (0) − W (Δ)

[−W (0) W (Δ)

W (Δ) −W (0)

] [
v1
v2

]

, (18)

with eigenvalues and eigenvectors given by

λ1 = W (Δ) − W (0)

W (0) − W (Δ)
= −1, v1 = (1, 1)T ,

λ2 = −W (0) − W (Δ)

W (0) − W (Δ)
, v2 = (−1, 1)T .

As expected, we find an eigenvalue with absolute value equal to 1, corresponding
to a pure translational eigenvector. The remaining eigenvalue, corresponding to a
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compression/extension eigenvector, determines the stability of themacroscopic bump.
The parameters Ai , Bi in Eq. (1) are such thatW has a global maximum at x = 0, with
W (0) > 0. Hence, the eigenvalues are finite real numbers and the pattern is stable if
W (Δ) < 0. We will present concrete bump computations in Sect. 10.

5.3 Multi-bump solutions

The discussion in the previous section can be extended to the case of solutions featuring
multiple bumps. For simplicity, we will discuss here solutions with 2 bumps, but the
case of k bumps follows straightforwardly. The starting point is amicroscopic structure
similar to (14), with two disjoint intervals [η1, η2), [η3, η4) ⊂ S each subdivided into
3m subintervals. We form the vector η = {ηi }4i=1 and have

κ

∫

Xm
1

W (x − y) dy =
2∑

j=1

Jm(x, η2 j−1, η2 j ) →
2∑

j=1

Jb(x, η2 j−1, η2 j ),

as m → ∞ uniformly in the variable x for all η1, . . . , η4 ∈ S with η1 < . . . < η4. In
the expression above, Jm and Jb are the same functions used in Sect. 5.1 for the single
bump. In analogy with what was done for the single bump, we consider the mapping
defined by

� : S4 × S
4 → R

4, (ξ, η) �→
{

− h +
2∑

j=1

Jb(ξi , η2 j−1, η2 j )

}4

i=1
.

Multi-bump solutions can then be studied as in Sect. 5. We present here the results
for a multi-bump for L = π with threshold crossings given by

ξ∗ = 1

2

⎡

⎢
⎢
⎣

−π − Δ

−π + Δ

π − Δ

π + Δ

⎤

⎥
⎥
⎦ , (19)

where Δ satisfies

Jb

(
π + Δ

2
,
−π − Δ

2
,
−π + Δ

2

)

+ Jb

(
π + Δ

2
,
π − Δ

2
,
π + Δ

2

)

= h. (20)

A quick calculation leads to the eigenvalue problem

λ

⎡

⎢
⎢
⎣

v1
v2
v3
v4

⎤

⎥
⎥
⎦ = 1

α

⎡

⎢
⎢
⎣

W (0) −W (Δ) W (π) −W (π − Δ)

−W (Δ) W (0) −W (π − Δ) W (π)

W (π) −W (π − Δ) W (0) −W (Δ)

−W (π − Δ) W (π) −W (Δ) W (0)

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

v1
v2
v3
v4

⎤

⎥
⎥
⎦ ,

(21)
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− ππ 0ξ1 ξ2 ξ3 ξ4
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v3
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J

Fig. 8 Stable mesoscopic multi-bump obtained for the deterministic model.We also plot the corresponding
macroscopic bump ξ∗ (Eqs. 19–20) and coarse eigenvectors. Parameters are κ = 30, h = 0.9, p = 1,
β → ∞, with other parameters as in Table 1

where α = −W (0) + W (Δ) − W (π) + W (π − Δ). The real symmetric matrix in
Eq. (21) has eigenvalues and eigenvectors given by

λ1 = −W (0) + W (Δ) − W (π) + W (π − Δ)

W (0) − W (Δ) + W (π) − W (π − Δ)
= −1, v1 = (1, 1, 1, 1)T ,

λ2 = −W (0) + W (Δ) + W (π) − W (π − Δ)

W (0) − W (Δ) + W (π) − W (π − Δ)
, v2 = (1, 1,−1,−1)T ,

λ3 = −W (0) − W (Δ) − W (π) − W (π − Δ)

W (0) − W (Δ) + W (π) − W (π − Δ)
, v3 = (1,−1, 1,−1)T ,

λ4 = −W (0) − W (Δ) + W (π) + W (π − Δ)

W (0) − W (Δ) + W (π) − W (π − Δ)
, v4 = (1,−1,−1, 1)T .

As expected, we have one neutral translational mode. If the remaining 3 eigenvalues
lie in the unit circle, the multi-bump solution is stable. A depiction of this multi-bump,
with corresponding eigenmodes can be found in Fig. 8.We remark that themulti-bump
presented here was constructed imposing particular symmetries (the pattern is even;
bumps all have the same widths). The system may in principle support more generic
bumps, but their construction and stability analysis can be carried out in a similar
fashion.

6 Travelling waves in the deterministic model

Travellingwaves in the deterministicmodel can also be studied via threshold crossings,
and we perform this study in the present section. We seek a measurable function
utw : S → U and a constant c ∈ R such that

u(x, t) = utw(x − ct) =
∑

k∈U
k1X tw

k
(x − ct) (22)
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almost everywhere in S and for all t ∈ Z. We recall that, in general, a state u(x, t)
is completely defined by its partition, {X tw

k (t)}. Consequently, Eq. (22) expresses that
a travelling wave has a fixed profile utw, whose partition, {X tw

k }, does not depend on
time. A travelling wave (utw, c) satisfies almost everywhere the condition

utw = σ−cΦd(utw; γ ),

where Φd is the deterministic evolution operator (12) and the shift operator is defined
by σx : u( ·) �→ u( · − x). The existence of a travelling wave is now an immediate
consequence of the symmetries of W, as shown in the following proposition. An
important difference with respect to the bump is that analytical expressions can be
found for both microscopic and mesoscopic profiles, as opposed to Proposition 1,
which concerns only the mesoscopic profile.

Proposition 2 (Travelling wave) Let h, κ ∈ R+. If there exists Δ ∈ (0, L) such that
h = κ

∫ 2Δ
Δ

W (y) dy, then

utw(z) =
∑

k∈U
k1X tw

k
(z), with partition

X tw−1 = [−2Δ,−Δ),

X tw
0 = [−L ,−2Δ) ∪ [0, L),

X tw
1 = [−Δ, 0),

is a travelling wave of the deterministic model (12) with speed c = Δ, associated
mesoscopic profile Jtw(z) = κ

∫ 0
−Δ

W (z − y) dy and activity set X tw≥ = [−2Δ,Δ].

Proof The assertion can be verified directly. We have

h

κ
=
∫ 2Δ

Δ

w(y)dy =
∫ 0

−Δ

W (Δ − y)dy =
∫ 0

−Δ

W (−2Δ − y)dy,

hence the activity set for utw is X tw≥ = [−2Δ,Δ]withmesoscopic profile κ
∫ 0
−Δ

W (z−
y) dy. Consequently, Φd(utw; γ ) has partition

Y−1 = [−Δ, 0),

Y0 = [−L ,−Δ) ∪ [Δ, L),

Y1 = [0,Δ],

and utw = σ−ΔΦd(utw, γ ) almost everywhere.

Numerical simulations of the deterministic model confirm the existence of the
mesoscopic travelling wave utw in a suitable region of parameter space, as will be
shown in Sect. 10. Themain difference between utw and the stochastic waves observed
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(b)(a)

t = 1

t = 30

t = 49

0.030.004

0.003

0.01 0.01

σ−tΔΦd(utw + εũ), κ = 38 σ−tΔΦd(utw + εũ), κ = 33

Fig. 9 Numerical investigation of the linear stability of the travelling wave of the deterministic system,
subject to perturbations in the wake of the wave. We iterate the map Φd starting from a perturbed state
utw + εũ, where utw is the mesoscopic wave profile of Proposition 2, travelling with speed Δ, and εũ is
non-zero only in two intervals of width 0.01 in the wake of the wave. We plot σ−tΔΦd(utw + εũ) and the
corresponding macroscopic profile as a function of t and we annotate the width of one of the perturbations.
a For κ = 38, the wave is stable. b for sufficiently small κ , the wave becomes unstable

in Fig. 4 is in the wake of the wave, where the former features quiescent neurons and
the latter a mixture of quiescent and refractory neurons.

6.1 Travelling wave stability

As we will show in Sect. 10, waves can be found for sufficiently large values of the
gain parameter κ . However, when this parameter is below a critical value, we observe
that waves destabilise at their tail. This type of instability is presented in the numerical
experiment of Fig. 9. Here, we iterate the dynamical system

u(z, t + 1) = σ−ΔΦd(u(z, t)), u(z, 0) = utw(z) + εũ(z), (23)
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where utw is the profile of Proposition 2, travelling with speed Δ, and the perturbation
εũtw is non-zero only in two intervals of width 0.01. We deem the travelling wave
stable if u(z, t) → utw(z) as t → ∞. For κ sufficiently large, the perturbations decay,
as witnessed by their decreasing width in Fig. 9a. For κ = 33, the perturbations grow
and the wave destabilises.

To analyse the behaviour of Fig. 9, we shall derive the evolution equation for a
relevant class of perturbations to utw. This class may be regarded as a generalisation
of the perturbation applied in this figure and is sufficient to capture the instabilities
observed in numerical simulations. We seek solutions to (23) with initial condition
u(z, t) = ∑

k k1Xk (t)(z) with time-dependent partitions

X−1(t) =
[

− 4Δ + δ1(t),−4Δ + δ2(t)
)

∪
[

− 2Δ + δ5(t),−Δ + δ6(t)
)
,

X0(t) =
[

− L ,−4Δ + δ1(t)
)

∪
[

− 4Δ + δ2(t),−3Δ + δ3(t)
)

∪
[

− 3Δ + δ4(t),−2Δ + δ5(t)
)

∪
[
δ7(t), L

)
,

X1(t) =
[

− 3Δ + δ3(t),−3Δ + δ4(t)
)

∪
[

− Δ + δ6(t), δ7(t)
)
,

and activity set X≥(t) = [ξ1(t), ξ2(t)]. In passing, we note that for δi = 0, the
partition above coincides with {X tw

k } in Proposition 2, hence this partition can be used
as perturbation of utw. Inserting the ansatz for u(ξ, t) into (23), we obtain a nonlinear
implicit evolution equation, �

(
δ(t + 1), δ(t)

) = 0, for the vector δ(t) as follows (see
Fig. 10)

δ1(t + 1) = δ3(t),

δ2(t + 1) = δ4(t),
∫ −3Δ+δ4(t)

−3Δ+δ3(t)
w(−2Δ + δ3(t+1)−y) dy+

∫ δ7(t)

−Δ+δ6(t)
w(−2Δ+δ3(t+1)−y) dy=h/κ,

δ4(t + 1) = δ5(t),

δ5(t + 1) = δ6(t),

δ6(t + 1) = δ7(t),
∫ −3Δ+δ4(t)

−3Δ+δ3(t)
w(Δ + δ7(t + 1) − y) dy +

∫ δ7(t)

−Δ+δ6(t)
w(Δ + δ7(t + 1) − y) dy=h/κ.

We note that the map above is valid under the assumption δ3(t) < δ4(t), which
preserve the number of intervals of the original partition. As inKilpatrick andBressloff
(2010), we note that this prevents us from looking at oscillatory evolution of δ(t). We
set δi (t) = ελtvi , retain terms up to first order and obtain an eigenvalue problem for
the matrix
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ξ1(t) ξ2(t)

δ1(t)

δ2(t)

δ3(t)

δ4(t)

δ6(t) δ7(t)

δ3(t)

δ4(t)

δ5(t)

δ6(t) δ7(t) ξ2 − Δ

−4Δ −3Δ −2Δ −Δ 0 Δ 2Δ

δ2(t + 1) = δ4(t)

δ1(t + 1) = δ3(t)

δ5(t)

ξ1 + 2Δ

δ3(t + 1) = ξ1 + 2Δ

δ4(t + 1) = δ5(t)

δ5(t + 1) = δ6(t) δ6(t + 1) = δ7(t)

δ7(t + 1) = ξ2 − Δ

u(z, t)

Φd(u(z, t))

σ−ΔΦd(u(z, t))

Fig. 10 Visualisation of one iteration of the system (23): a perturbed travelling wave (top) is first trans-
formed by Φd using the rules (11) (centre) and then shifted back by an amount Δ (bottom). This gives rise
to an implicit evolution equation �

(
δ(t + 1), δ(t)

) = 0 for the threshold crossing points of the perturbed
wave, as detailed in the text
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1

α

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 α 0 0 0 0
0 0 0 α 0 0 0
0 0 −w(Δ) w(Δ) 0 −w(Δ) w(2Δ)

0 0 0 0 α 0 0
0 0 0 0 0 α 0
0 0 0 0 0 0 α

0 0 w(4Δ) −w(4Δ) 0 w(2Δ) −w(Δ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where α = w(2Δ) − w(Δ). Once again, we have an eigenvalue on the unit circle,
corresponding to a neutrally stable translationmode. If all other eigenvalues are within
the unit circle, then the wave is linearly stable. Concrete calculations will be presented
in Sect. 10.

7 Approximate probability mass functions for the Markov chain model

We have thus far analysed coherent states of a deterministic limit of the Markov chain
model, andwenowmove to themore challenging stochastic setting.More precisely,we
return to the original model (8) and find approximate mass functions for the coherent
structures presented in Sect. 3 (see Figs. 2, 3, 4). These approximations will be used
in the lifting procedure of the equation-free framework.

The stochastic model is a Markov chain whose 3N -by-3N transition kernel has
entries specified by (1). It is useful to examine the evolution of the probability
mass function for the state of a neuron at position xi in the network, μk(xi , t) =
Pr
(
u(xi , t) = k

)
, k ∈ U, which evolves according to

⎡

⎣
μ−1(xi , t + 1)
μ0(xi , t + 1)
μ1(xi , t + 1)

⎤

⎦ =
⎡

⎣
1 − p 0 1
p 1 − f (J (u))(xi , t) 0
0 f (J (u))(xi , t) 0

⎤

⎦

⎡

⎣
μ−1(xi , t)
μ0(xi , t)
μ1(xi , t)

⎤

⎦ , (24)

or in compact notationμ(xi , t+1) = �(xi , t)μ(xi , t).We recall that f is the sigmoidal
firing rate and that J is a deterministic function of the random vector, u(x, t) ∈ U

N ,
via the pullback set Xu

1 (t):

J (u)(x, t) = κ

∫

X

W (x − y)1Xu
1 (t)(y) dy.

As a consequence, the evolution equation for μ(xi , t) is non-local, in that J (xi , t)
depends on the microscopic state of the whole network.

We now introduce an approximate evolution equation, obtained by posing the prob-
lem on a continuum tissue S and by substituting J (x, t) by its expected value

μ(x, t + 1) = �̃(x, t)μ(x, t), (25)
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where μ : S × Z → [0, 1]3,

�̃(x, t) =
⎡

⎣
1 − p 0 1
p 1 − f

(
E[J ])(x, t) 0

0 f
(
E[J ])(x, t) 0

⎤

⎦ , (26)

and

E[J ](x, t) = κ

∫

S

w(x − y)μ1(y, t) dy. (27)

In passing, we note that the evolution Eq. (25) is deterministic. We are interested in
two types of solutions to (25):

1. A time-independent bump solution, that is amappingμb such thatμ(x, t) = μb(x)
for all x ∈ S and t ∈ Z.

2. A travelling wave solution, that is, a mapping μtw and a real number c such that
μ(x, t) = μtw(x − ct) for all x ∈ S and t ∈ Z.

7.1 Approximate probability mass function for bumps

We observe that, posing μ(y, t) = μb(y) in (25), we have

E[J ](x) = κ

∫

S

w(x − y)(μb)1(y) dy.

Motivated by the simulations in Sect. 3 and by Proposition 1, we seek a solution
to (25) in the limit β → ∞, with E[J ](x) ≥ h for x ∈ [0,Δ], and (μb)1(x) �= 0 for
x ∈ [0,Δ], where Δ is unknown. We obtain

μb(x) = �̃b(x)μb(x),

where

�̃b(x) =
⎡

⎣
1 − p 0 1
p 1 0
0 0 0

⎤

⎦1S\[0,Δ](x) +
⎡

⎣
1 − p 0 1
p 0 0
0 1 0

⎤

⎦1[0,Δ](x)

= Q<1S\[0,Δ](x) + Q≥1[0,Δ](x),

We conclude that, for each x ∈ [0,Δ] (respectively x ∈ S\[0,Δ]), μb(x) is the right
‖ · ‖1-unit eigenvector corresponding to the eigenvalue 1 of the stochastic matrix Q≥
(respectively Q<). We find

μb(x) =
⎡

⎣
0
1
0

⎤

⎦1S\[0,Δ](x) + p

1 + 2p

⎡

⎣
1/p
1
1

⎤

⎦1[0,Δ](x) (28)
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0
0

1

−2 2x
0 2−2 x

μb μ1

μ0

μ-1

μ

(b)(a)

p = 1, β → ∞ p = 0.7, β = 5

(c) (d)

45.335.225.11

1 4δ

Δ ∼ Pr(δ)

45.335.225.11

1 4δ

Δ ∼ Pr(δ)

Fig. 11 Comparison between the probabilitymass functionμb, as computed by (28)–(29), and the observed
distribution μ of the stochastic model. a We compute the vector (μb)k , k ∈ U in each strip using (30) and
visualise the distribution using vertically juxtaposed color bars, with height proportional to the values
(μb)k , as shown in the legend. b A long simulation of the stochastic model supporting a stochastic bump
u(x, t) for t ∈ [0, T ], where T = 105. At each time t > 10 (allowing for initial transients to decay), we
compute ξ1(t), ξ2(t), Δ(t) and then produce histograms for the random profile u(x − ξ1(t) − Δ(t)/2, t).
c In the deterministic limit, the value of Δ is determined by (29), hence we have a Dirac distribution. d the
distribution of Δ obtained in the Markov chain model. Parameters are as in Table 1

and, by imposing the threshold condition E[J ](Δ) = h, we obtain a compatibility
condition for Δ,

h = κp

1 + 2p

∫ Δ

0
w(Δ − y) dy. (29)

We note that if p = 1 we have E[J ](x) = Jb(x, 0,Δ) where Jb is the profile for the
mesoscopic bump found in Proposition 1, as expected.

In Fig. 11a,we plotμb(x) as predicted by (28)–(29), for p = 0.7, κ = 30, h = 0.9.
At each x , we visualise (μb)k for each k ∈ U using vertically juxtaposed color bars,
with height proportional to the values (μb)k , as shown in the legend. For a qualitative
comparison with direct simulations, we refer the reader to the microscopic profile
u(x, 50) shown in the right panel of Fig. 2a: the comparison suggests that eachu(xi , 50)
is distributed according to μb(xi ).

We also compared quantitatively the approximate distribution μb with the dis-
tribution, μ(x, t), obtained via Monte Carlo samples of the full system (24). The
distributions are obtained from a long-time simulation of the stochastic model sup-
porting amicroscopic bump u(x, t) for t ∈ [0, T ], with T = 105. At each discrete time
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912 D. Avitable, K. C. A. Wedgwood

t , we compute the mesoscopic profile, J (u)(x, t), the corresponding threshold cross-
ings and width: ξ1(t), ξ2(t), Δ(t) and then produce histograms for the random profile
u(x − ξ1(t) − Δ(t)/2, t). The instantaneous shift applied to the profile is necessary
to pin the wandering bump.

We note a discrepancy between the analytically computed histograms, in which
we observe a sharp transition between the region x ∈ [0,Δ] and x ∈ S\[0,Δ], and
the numerically computed ones, in which this transition is smoother. This discrep-
ancy arises because Δ(t) oscillates around an average value Δ predicted by (29); the
approximate evolution Eq. (25) does not account for these oscillations. This is visible
in the histograms of Fig. 11c, d, as well as in the direct numerical simulation Fig. 6a.

7.2 Approximate probability mass function for travelling waves

We now follow a similar strategy to approximate the probability mass function for
travelling waves. We poseμ(x, t) = μtw(x −ct) in the expression for E[J ], to obtain

κ

∫

S

w(x − y)(μtw)1(y − ct) dy=κ

∫

S

w(x − ct − y)(μtw)1(y) dy=E[J ](x − ct).

Proposition 2 provides us with a deterministic travelling wave with speed c = Δ.
The parameterΔ is also connected to themesoscopicwave profile, which has threshold
crossings ξ1 = −2Δ and ξ2 = Δ. Hence, we seek for a solution to (25) in the limit
β → ∞, with E[J ](z) ≥ h for x ∈ [−2c, c], and (μtw)1(z) �= 0 for z ∈ [−2c, c],
where c is unknown. For simplicity, we pose the problem on a large domain whose
size is commensurate with c, that is S = cT/R, where T is an even integer much
greater than 1.

We obtain

σctμtw(z) = �̃tw(z − c(t − 1))�̃tw(z − c(t − 2)) · · · �̃tw(z)μtw(z),

where

�̃tw(z) = Q<1S\[−c,c](z) + Q≥1S[−2c,c](z).

To make further analytical progress, it is useful to partition the domain S = cT/R

in strips of width c,

S =
T/2⋃

j=T/2

[
jc, ( j + 1)c

) =
T/2−1⋃

j=T/2

I j (c),

and impose that the wave returns back to its original position after T iterations,
σcTμtw(z) = μtw(z), while satisfying the compatibility condition h = E[J ](c). This
leads to the system
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μtw(z) = R(z, c)μtw(z) =
[ T/2−1∑

j=−T/2

R j1I j (c)(z)

]

μtw(z),

κ

∫ c

−2c
W (c − y)(μtw)1(y) dy = h.

(30)

With reference to system (30) we note that:

1. R(z, c) is constantwithin each strip I j , hence theprobabilitymass function,μtw(z),
is also constant in each strip, that is, μtw(z) = ∑

i ρi1Ii (c)(z) for some unknown
vector (ρ−T/2, . . . , ρT/2) ∈ S

3T .
2. Each R j is a product of T 3-by-3 stochastic matrices, each equal to Q< or Q≥.

Furthermore, the matrices {R j } are computable. For instance, for the strip I−1 we
have

R−1 =

⎡

⎢
⎢
⎣

(1 − p)T + p(1 − p)T−2 (1 − p)T−2 (1 − p)T−1

p(1 − p)T−1 + p2(1 − p)T−3 p(1 − p)T−3 p(1 − p)T−2

1 − (1 − p)T−1 − p(1 − p)T−3 1 − (1 − p)T−3 1 − (1 − p)T−2

⎤

⎥
⎥
⎦ .

Consequently, μtw(z) can be determined by solving the following problem in the
unknown (ρ−T/2, . . . , ρT/2, c) ∈ S

3T × R:

ρi − Riρi = 0, i = −T/2, . . . , T/2 − 1,

−h + κ(ρ−1)1

∫ 0

−c
W (c − y) dy = 0.

(31)

Before presenting a quantitative comparison between the numerically determined
distribution,μtw(z), and that obtained via direct time simulations, we make a few effi-
ciency considerations. In the following sections, it will become apparent that sampling
the distribution μtw(z) for various values of control parameters, such as h or κ , is a
recurrent task, at the core of the coarse bifurcation analysis: each linear and nonlinear
function evaluation within the continuation algorithm requires sampling μtw(z), and
hence solving the large nonlinear problem (31).

With little effort, however, we can obtain an accurate approximation to μtw, with
considerable computational savings. The inspiration comes once again from the ana-
lytical wave of Proposition 2. We notice that only the last equation of system (31)
is nonlinear; the last equation is also the only one which couples {ρ j } with c. When
p = 1 the wave speed is known as β → ∞, N → ∞ and p = 1 corresponds to the
deterministic limit, hence E[J ](z) = Jtw(z), which implies c = Δ and (ρ−1)1 = 1.
The stochastic waves observed in direct simulations for p �= 1, however, display
c ≈ (ξ2 − ξ1)/3 = Δ and μ ≈ 1 in the strip where J achieves a local maximum (see,
for instance Fig. 4, for which p = 0.4).

The considerations above lead us to the following scheme to approximateμtw: (i) set
c = Δ and remove the last equation in (31); (ii) solve T decoupled 3-by-3 eigenvalue
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(a) (b)

μ1

μ0

μ-1

−4Δ 00−4Δ 4Δ4Δ
0

1

μμtw

I-1 I-1

zz

Fig. 12 Similarly to Fig. 11, we compare the approximated probabilitymass functionμtw, and the observed
distributionμ of the stochastic model. a The probability mass function is approximated using the numerical
scheme outlined in the main text for the solution of (31); the strip I−1 is indicated for reference. b A set of
9 × 105 realisations of the stochastic model for a travelling wave are run for t ∈ [0, T ], where T = 1000.
For each realisation s, we calculate the final threshold crossings ξ s1 (T ), ξ s2 (T ), and then compute histograms
of us (x − ξ s2 (T ), T ). We stress that the strips in (a) are induced by our numerical procedure, while the ones
in (b) emerge from the data. The agreement is excellent and is preserved across a vast region of parameter
space (not shown). Parameters are as in Table 1

problems to find ρi . Furthermore, if p remains fixed in the coarse bifurcation analysis,
ρi can be pre-computed and step (ii) can be skipped.

In Fig. 12a, we report the approximate μtw found with the numerical procedure
described above. An inspection of the microscopic profile u(x, 45) in the right panel
of Fig. 4a shows that this profile is compatible with μtw. We also compared quantita-
tively the approximate distribution with the distribution,μ(x, t), obtained with Monte
Carlo samples of the full system (24). The distributions are obtained from M samples
{us(x, t)}Ms=1 of the stochastic model for a travelling wave for t ∈ [0, T ]. For each
sample s, we compute the thresholds, ξ s1 (T ), ξ s2 (T ), of the corresponding J (us)(x, T )

and then produce histograms for us(x − ξ s2 (T ), T ). This shifting, whose results are
reported in Fig. 12b, does not enforce any constant value for the velocity, hence it
allows us to test the numerical approximation μtw. The agreement between the two
distributions is excellent: we stress that, while the strips in Fig. 12a are enforced by
our approximation, the ones in Fig. 12b emerge from the data. We note a slight dis-
crepancy, in that μtw(−3Δ) ≈ 0, while the other distribution shows a small nonzero
probability attributed to the firing state at ξ = −3Δ. Despite this minor disagree-
ment, the differences between the approximated and observed distributions remain
small across all parameter regimes of note and the approximations even retain their
accuracy as β is decreased (not shown).

8 Coarse time-stepper

As mentioned in the introduction, equation-free methods allow us to compute macro-
scopic states in cases in which a macroscopic evolution equation is not available in
closed form (Kevrekidis et al. 2003; Kevrekidis and Samaey 2009). To understand
the general idea behind the equation-free framework, we initially discuss an example

123



Macroscopic coherent structures in a stochastic neural network 915

taken from one of the previous sections, where an evolution equation does exist in
closed form.

In Sect. 5, we described bumps in a deterministic limit of the Markov chain model.
In this description, we singled out a microscopic state (the function um(x) with parti-
tion (14)) and a corresponding mesoscopic state (the function Jm(x)), both sketched
in Fig. 7. Proposition 1 shows that there exists a well defined mesoscopic limit profile,
Jb, which is determined (up to translations in x) by its threshold crossings ξ1 = 0,
ξ2 = Δ. This suggests a characterisation of the bump in terms of the macroscopic
vector (ξ1, ξ2) or, once translation invariance is factored out, in terms of the macro-
scopic bump width, Δ. Even though the microscopic state um is not an equilibrium of
the deterministic system, the macroscopic state (0,Δ) is a fixed point of the evolution
Eq. (17), whose evolution operator� is known in closed form, owing to Proposition 1.
It is then possible to compute Δ as a root of an explicitly available nonlinear equation.

We now aim to use equation-free methods to compute macroscopic equilibria in
cases where we do not have an explicit evolution equation, but only a numerical
procedure to approximate�. As mentioned in the introduction, the evolution equation
is approximated using a coarse time-stepper, whichmaps themacroscopic state at time
t0 to the macroscopic state at time t1 using three stages: lifting, evolution, restriction.
The specification of these stages (the lifting in particular) typically requires some
closure assumptions, which are enforced numerically. In our case, we use the analysis
of the previous sections for this purpose. In the following section, we discuss the coarse
time-stepper for bumps and travellingwaves. Themulti-bump case is a straightforward
extension of the single bump case.

8.1 Coarse time-stepper for bumps

The macroscopic variables for the bump are the threshold crossings {ξi } of the meso-
scopic profile J . The lifting operator for the bump takes as arguments {ξi } and returns
a set of microscopic profiles compatible with these threshold crossings:

Lb : S2 → U
N×M , (ξ1, ξ2)

T �→ {us(x)}s .

If β → ∞, us(x) are samples of the analytical probability mass function μb(x +
Δ/2), where μb is given by (28) with Δ = ξ2 − ξ1. In this limit, a solution branch
may also be traced by plotting (29).

If β is finite, we either extract samples from the approximate probability mass
functionμb used above, orwe extract samples us(x) satisfying the following properties
(see Proposition 1 and Remark 3):

1. us(x) is symmetric with respect to the axis x = (̃ξ1+ ξ̃2)/2, where ξ̃i = round(ξi )
and round : S → SN .

2. us(x) = 0 for all x ∈ [−L , ξ̃1) ∪ (̃ξ2, L).
3. The pullback sets, X1 and X−1, are contained within [̃ξ1, ξ̃2] and are unions of a

random number of intervals whose widths are also random. A schematic of the
lifting operator for bumps is shown in Fig. 13.
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l3
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l2

d1 = −1

d2 = −1

l4
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d4
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l

l4 ∼ Poisson(l)

d4 ∼ Bernoulli(d)

d−1 1

a
1 − a

Fig. 13 Schematic representation of the lift operator for a bump solution. This figure displays a repre-
sentation of how the states for neurons located within the activity set, [ξ1, ξ2], are lifted. For illustrative
purposes, we assume here that we are midway through the lifting operation, where 3 steps of the while loop
listed in Algorithm 1 have been completed and a fourth one is being executed (shaded area). The width
l4 of the next strip is drawn from a Poisson distribution. The random variable d ∈ {−1, 1} indicates the
direction through which we cycle through the states {−1, 0, 1} during the lifting. The number d4 is drawn
from a Bernoulli distribution whose average a gives the probablity of changing direction. For full details
of the lifting operator, please refer to Algorithm 1

A more precise description of the latter sampling is given in Algorithm 1. As
mentioned in the introduction, lifting operators are not unique and we have given
above two possible examples of lifting. In our computations, we favour the second
sampling method. The mesoscopic profiles, J , generated using this approach are well-
matched toE[J ] produced by the analytically derived probability mass functions (28).
Numerical experiments demonstrate that this method is better than the first possible
lifting choice at continuing unstable branches. This is most likely due to the fact that
the latter method slightly overestimates the probability of neurons within the bump to
be in the spiking state, and underestimates that of them being in the refractory state
and this helps mitigate the problems encountered when finding unstable states caused
by the combination of the finite size of the network and non-smooth characteristics of
the model (when β is high).

The evolution operator is given by

ET : UN×M → U
N×M , {u j (x)} j �→ {ϕT (u j (x))} j ,

where ϕT denotes T compositions of the microscopic evolution operator (8) and the
dependence on the control parameter, γ , is omitted for simplicity.

For the restriction operator, we compute the average activity set of the profiles.
More specifically, we set

R : UN×M → S
2, {u j (x)} j �→ (ξ1, ξ2)

T,

where

ξi = 1

M

M∑

s=1

ξ si , i = 1, 2,
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Algorithm 1: Lifting operator for bump
Input : Threshold crossings ξ1, ξ2; Average number of strips, m; Average for the Bernoulli

distribution, a; Width of the domain, L .
Output : Profiles u1(x), . . . , uM (x)
Comments : The profiles us (x) are assumed to be symmetric around x = (ξ1 + ξ2)/2. The operator

round rounds a real number to a computational grid with stepsize δx = 2L/N .
Pseudocode:
for s = 1, M do

Set us (x) = 0 for all x ∈ [−L , ξ1) ∪ (ξ2, L)

Set d = −1
x = round(ξ1), us (x) = 1
while x ≤ (ξ1 + ξ2)/2 do

Select random width l ∼ Poisson((ξ2 − ξ1)/m)

Select random increment b ∼ Bernoulli(a), d = (d + 2b + 1) mod 3 − 1
for j = 1, l do

Update x = x + δx
if x ≤ (ξ1 + ξ2)/2 then

if j = l then ui changes value at the next grid point
us (x + δx) = (us (x) + d + 1) mod 3 − 1

else us remains constant at the next grid point
us (x + δx) = us (x)

end
Reflection around symmetry axis, u(ξ2 + ξ1 − x) = u(x)

end
end

end
end

and ξ si are defined using a piecewise first-order interpolant P3
N J of J with nodes

{xi }Ni=0,

ξ s1 =
{

x ∈ S : P3
N J (us)(x) = h,

d

dx
P3
N J (us)(x) > 0

}

,

ξ s2 =
{

x ∈ S : P3
N J (us)(x) = h,

d

dx
P3
N J (us)(x) < 0

}

.

We also point out that the computation stops if the two sets above are empty,
whereupon, we set ξ s1 = ξ s2 = 0.

The coarse time-stepper for bumps is then given by

Φb : S2 → S
2, ξ �→ (R ◦ ET ◦ Lb)(ξ), (32)

where the dependence on parameter γ has been omitted.

8.2 Coarse time-stepper for travelling waves

In Sect. 7.1,we showed that the probabilitymass function,μtw(z), of a coarse travelling
wave can be approximated numerically using the travelling wave of the deterministic
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model, by solving a simple set of eigenvalue problems. It is therefore natural to use
μtw in the lifting procedure for the travelling wave. In analogy with what was done for
the bump, our coarse variables (ξ1, ξ2) are the boundaries of the activity set associated
with the coarse wave, X≥ = [ξ1, ξ2]. We then set

Ltw : X2 → U
N×M , (ξ1, ξ2)

T �→ {us(x)}s,

where {us(xi )}s areM independent samples of the probability mass functionsμtw(xi ),
with c = (ξ2 − ξ1)/3. The restriction operator for travelling waves is the same as used
for the bump. The coarse time-stepper for travelling waves, Φtw, is then obtained as
in (32), with Lb replaced by Ltw.

Φtw : S2 → S
2, ξ �→ (R ◦ ET ◦ Ltw)(ξ). (33)

9 Root finding and pseudo-arclength continuation

Once the coarse time-steppers, Φb and Φtw, have been defined, it is possible to use
Newton’s method and pseudo-arclength continuation to compute coarse states, con-
tinue them in one of the control parameters and assess their coarse linear stability. In
this section, we will indicate dependence upon a single parameter γ ∈ R, implying
that this can be any of the control parameters in (8).

For bumps, we continue in γ the nonlinear problem Fb(ξ ; γ ) = 0, where

Fb : S2 × R → S
2, ξ �→

[
ξ1

ξ2 − (
Φb(ξ ; γ )

)
2

]

. (34)

A vector ξ such that Fb(ξ ; γ ) = 0 corresponds to a coarse bump with activity
set X≥ = [0, ξ2] and width ξ2, occurring for the parameter value γ , that is, we
eliminated the translation invariance associated with the problem by imposing ξ1 = 0.
In passing, we note that it is possible to hardwire the condition ξ1 = 0 directly in
Fb and proceed to solve an equivalent 1-dimensional system. Here, we retain the
2-dimensional formulation with the explicit condition ξ1 = 0, as this makes the
exposition simpler.

During continuation, the explicitly unavailable Jacobians

Dξ Fb(ξ ; γ ) = I − DξΦb(ξ ; γ ), Dγ Fb(ξ ; γ ) = Dγ Φb(ξ ; γ ),

are approximated using the first-order forward finite-difference formulas

εDξΦb(ξ ; γ )̃ξ ≈ Φb(ξ + ε̃ξ ; γ ) − Φb(ξ ; γ ),

εDγ Φb(ξ ; γ )γ̃ ≈ Φb(ξ ; γ + εγ̃ ) − Φb(ξ ; γ ).

The finite difference formula for DξΦb also defines the Jacobian operator used to
compute stability: for a given solution ξ∗ of (34), we study the associated eigenvalue
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problem

λξ = DξΦb(ξ∗; γ )ξ, λ ∈ C, ξ ∈ R
2.

For coarse travelling waves, we define

Ftw : S2 × R
2 → S

2,

[
ξ

c

]

�→
⎡

⎣
ξ1

ξ2 − cT + (
Φb

(
ξ ; γ

))
2

c − (ξ2 − ξ1)/3

⎤

⎦ . (35)

A solution (ξ, c) to the problem Ftw(ξ, c; γ ) = 0 corresponds to a coarse travelling
wave with activity set X≥ = [0, ξ2] and speed ξ2/3, that is, we eliminated the transla-
tion invariance and imposed a speed c in accordance with the lifting procedureLtw. As
for the bump we can, in principle, solve an equivalent 1-dimensional coarse problem.

10 Numerical results

We begin by testing the numerical properties of the coarse time-stepper, the Jacobian-
vector products and the Newton solver used for our computations. In Fig. 14a, we
evaluate the Jacobian- vector product of the coarse time stepper with p = 1, β → ∞
for bumps (waves) evaluated at a coarse bump (wave), in the direction ε̃ξ , where
0 < ε � 1 and ξ̃ is a random vector with norm 1. Since this coarse time stepper
corresponds to the deterministic case, we expect the norm of the Jacobian-vector
product to be an O(ε), as confirmed by the numerical experiment. In Fig. 14b, we
repeat the experiment in the stochastic setting (p = 0.4), for the travelling wave
case with various number of realisations. As expected, the norm of the Jacobian-
vector action follows the O(ε) curve for sufficiently large ε: the more realisations are
employed, the more accurately the O(ε) curve is followed.

We then proceed to verify directly the convergence history of the damped Newton
solver. In Fig. 15a, we use a damping factor 0.5 and show the residual of the problem
as a function of the number of iterations, showing that the method converges quickly
to a solution. At first sight, it is surprising that the achievable tolerance of the problem
does not change when the number of realisations increases. A second experiment,
however, reported in Fig. 15b, shows that this behaviour is caused by the low system
size: when we increase N from 27 to 29, the achievable tolerance decreases by one
order of magnitude.

10.1 Numerical Bifurcation analysis

Gong and Robinson (2012), and Qi and Gong (2015) found wandering spots and prop-
agating ensembles using direct numerical simulations on the plane. Here, we perform
a numerical bifurcation analysis with various control parameters for the structures
found in Sect. 3 on a one-dimensional domain.

In Fig. 16a, we vary the primary control parameter κ , the gain of the convolution
term, therefore, we study existence and stability of the bumps and the travelling pulse
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Fig. 14 Jacobian-vector product norm as a function of ε. The approximated Jacobian-vector products
Dξ Fb(ξ )̃ξ and Dξ Ftw(ξ )̃ξ , are evaluated at a coarse bump and a coarse travelling wave ξ in a randomly
selected direction ε̃ξ , where ‖ξ‖2 = 1. a A single realisation of the deterministic coarse-evolution maps is
used in the test, showing that the norm of the Jacobian-vector product is anO(ε), as expected. Parameters:
p = 1, κ = 30, β → ∞ (Heaviside firing rate), h = 1, N = 128, A1 = 5.25, A2 = 5, B1 = 0.2, B2 = 0.3.
b The experiment is repeated for a coarse travelling wave in the stochastic setting and for various values of
M . Parameters as in (a), except p = 0.4
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Fig. 15 Convergence history of the dampedNewton’smethod applied to the coarse travellingwaveproblem.
a The method converges linearly, and the achievable tolerance does not decrease when the number of
realisations M is increased. b The achievable tolerance depends on the grid size, or, equivalently, on the
number of neurons, N

when the global coupling is varied. This continuation is performed for a bump, a
multiple bump and a travelling pulse in the continuum deterministic model, using
Eqs. (17), (20) and (23), respectively.

For sufficiently high κ , these states coexist and are stable in a large region of
parameter space. We stress that spatially homogeneous mesoscopic states J (x) ≡ J∗,
with 0 = J∗ or J∗ > h are also supported by the model, but are not treated here.
Interestingly, the three solution branches are disconnected, hence the bump analysed
in this study does not derive from an instability of the trivial state. A narrow unstable
bump Δ � 1 exists for arbitrarily large κ (red branch); as κ decreases, the branch
stabilises at a saddle-node bifurcation. At κ ≈ 42, the branch becomes steeper, the
maximum of the bump changes concavity, developing a dimple. On an infinite domain,
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Fig. 16 Bifurcation diagrams for bumps (B), multibumps (MB) and travelling waves (TW) using κ as
bifurcation parameter parameter. aUsing the analytical results, we see that bump,multi-bump and travelling
wave solutions coexist and are stable for sufficiently high κ (see main text for details). b The solution
branches found using the equation-free methods agree with the analytical results. Parameters as in Table 1
except h = p = 1.0, β → ∞

the branch displays an asymptote (not shown) as the bump widens indefinitely. On a
finite domain, like the one reported in the figure, there is a maximum achievable width
of the bump, due to boundary effects. The travelling wave is also initially unstable,
but does not stabilise at the saddle node bifurcation. Instead, the wave becomes stable
at κ ≈ 33, confirming the numerical simulations reported in Fig. 9.

In Fig. 16b, we repeat the continuation for the same parameter values, but on a finite
network, using the coarse time-steppers outlined in Sects. 8.1 and 8.2. The numerical
procedure returns results in line with the continuum case, even at the presence of the
noise induced by the finite size. The branches terminate for large κ and low Δ: this
can be explained by noting that, if J (x) ≡ 0, then the system attains the trivial resting
state u(x) ≡ 0 immediately, as no neuron can fire; on a continuum network, Δ can
be arbitrarily small, hence the branch can be followed for arbitrarily large κ; on a
discrete network, there is a minimal value of Δ that can be represented with a finite
grid.

We now consider continuation of solutions in the stochastic model. In Fig. 17, we
vary the transition probability, p, from the refractory to quiescent state. In panel (a),
we show analytical results, given by solving (28)–(29), whilst panel (b) shows results
found using the equation-free method. We find qualitatively similar diagrams in both
cases, though we note some quantitative differences, owing to the finite size of the
network and the finiteness of β: at the presence of noise, the stationary solutions exist
for a wider region of parameter space (compare the folds in Fig. 17a, b); a similar
situation arises, is also valid for the travelling wave branches.

The analytical curves of Fig. 17a do not contain any stability information, which are
instead available in the equation-free calculations of Fig. 17b, confirming that bump
and multi-bump destabilise at a saddle-node bifurcation, whereas the travelling wave
becomes unstable to perturbations in the wake, if p is too large. The lower branch of
the travelling wave is present in the analytical results, but not in the numerical ones,
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Fig. 17 Bifurcation in the control parameter p. a Existence curves obtained analytically; we see that, below
a critical value of p, only the travelling wave exists. b The solution branches found using the equation-free
method agree qualitatively with the analytical results, and we can use the method to infer stability. For full
details, please refer to the text. Parameters as in Table 1 except κ = 20.0, h = 0.9, with β → ∞ for (a)
and β = 20.0 for (b)

Fig. 18 Bifurcation in the
control parameter β. For a large
range of values, we observe very
little change in Δ as β is varied.
Parameters as in Table 1 except
κ = 40.0, h = 0.9, p = 1.0. See
the main text for full details
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as this branch is not captured by our lifting strategy: when we lift a travelling wave
for very low values of Δ, we have that J < h for all x ∈ SN and the network attains
the trivial state u(x) ≡ 0 in 1 or 2 time steps, thereby the coarse time stepper becomes
ineffective, as the integration time T can not be reduced to 0.

Gong and Robinson (2012); Qi and Gong (2015) found that refractoriness is a
key component to generating propagating activity in the network. The bifurcation
diagram presented here confirm this, as we recognise 3 regimes: for high p (low
refractory time) the system supports stationary bumps, as the wave is unstable; for
intermediate p, travelling and stationary bumps coexist and are stable, while for low
p (high refractory time) the system selects the travelling wave.

In Fig. 18, we perform the same computation now varying β, which governs the
sensitivity of the transition from quiescence to spiking. Here, we see that the wave
and both bump solutions are stable for a wide range of β values and furthermore, that
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Fig. 19 Bifurcation diagram for bumps in a heterogeneous network. To generate this figure, we replaced
the coupling function with W̃ (x, y) = W (x − y)(1+W0 cos(y/s)), withW0 = 0.01, s = 0.5. We observe
the snaking phenomenon in the approximate interval κ ∈ [38, 52]. The branches moving upwards and to
the right are stable, whereas those moving to the left are unstable. The images on the right, obtained via
direct simulation, depict the solution profiles on the labelled part of the branches. We note the similarity of
the mesoscopic profiles within the middle of the bump. The continuation was performed for the continumm,
deterministic model with parameters are κ = 30, h = 0.9

these states are largely insensitive to variations in this parameter, implying that the
Heaviside limit is a good approximation for the network in this region of parameter
space.

Finally, we apply the framework presented in the previous sections to study het-
erogeneous networks. We modulate the synaptic kernel using a harmonic function, as
studied in Avitabile and Schmidt (2015) for a neural field. As in Avitabile and Schmidt
(2015), the heterogeneity promotes the formation of a hierarchy of stable coexisting
localised bumps, with varying width, arranged in a classical snaking bifurcation dia-
gram as presented in Fig. 19. A detailed study of this bifurcation structure, while
possible, is outside the scope of the present paper.

11 Discussion

In this article, we have used a combination of analytical and numerical techniques
to study pattern formation in a Markov chain neural network model. Whilst simple
in nature, the model exhibits rich dynamical behaviour, which is often observed in
more realistic neural networks. In particular, spatio-temporal patterns in the form of
bumps have been linked to working memory (Funahashi et al. 1989; Colby et al.
1995; Goldman-Rakic 1995), whilst travelling waves are thought to be important for
plasticity (Bennett 2015) andmemory consolidation (Massimini et al. 2004; Rasch and
Born 2013). Overall, our results reinforce the findings of Gong and Robinson 2012,
namely that refractoriness is key to generating propagating activity: we have shown
analytically and numerically that waves are supported by a combination of high gains
in the synaptic input and moderate to long refractory times. For high gains and short
refractory times, the network supports localised, meandering bumps of activity.
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The analysis presented in this manuscript highlights the multiscale nature of the
model by showing how evolution on a microscopic level gives rise to emergent behav-
iour at meso- and macroscopic levels. In particular, we established a link between
descriptions of the model at multiple spatial scales: the identified coarse spatiotempo-
ral patterns have typified and recognisable motifs at the microscopic level, which we
exploit to compute macroscopic patterns and their stability.

To connect our micro- and macroscopic variables, we take advantage of interface
approaches, which are typically applied to continuum networks. A notable excep-
tion is offered by Chow and Coombes (2006), who consider a network based upon
the lighthouse model (Haken 2000a, b). In a similar vein to our approach, they show
how analysis of the discrete network can be facilitated by considering a continuum
approximation and derive threshold equations to define bump solutions. This analy-
sis also highlights that perturbations to the microscopic state, specifically the phase
arrangement within the bump, can alter the dynamics of the bump edges.

Chow and Coombes found that wandering bump solutions in the lighthouse model
arise for sufficiently fast synaptic processing. This is congruent with our result that
short refractory times in (8) elicit coherent bump states, since both refractory times and
synaptic processing timescales affect the average firing rate of the neuron. However,
bumps cease to exist in our model if the refractory times are too long, whereas the
lighthouse model supports stationary bumps for slow synapses, which highlights the
subtle differences between the roles of refractoriness and synaptic processing in neural
networks. It should also be noted that the meandering observed, for instance, in Fig. 2
is due to noise, and that all bumps will tend to wander; on the other hand, the mean-
dering described by Chow and Coombes arises from the deterministic dynamics of
the lighthouse model, and it is triggered by a sufficently fast synaptic process. We also
remark that, without modification, the lighthouse model does not support travelling
wave solutions, and so we cannot make comparisons regarding these solutions.

Travelling waves and bumps have almost identical meso- and macroscopic profiles:
if microscopic data were removed from Figs. 2a and 4a, the profiles and activity sets
of these two patterns would be indistinguishable. We have shown that a disambigua-
tion is however possible if the meso- and macroscopic descriptions take into account
microscopic traits of the patterns: in the deterministic limit of the system, where math-
ematical analysis is possible, the microscopic structure is used in the partition sets of
Propositions 1 and 2; in the stochastic setting with Heaviside firing rates and an infinite
number of neurons, the microscopic structure is reflected in the approximate probabil-
ity mass functions appearing in Sect. 7; in the full stochastic finite-size setting, where
an analytical description is unavailable, the microscopic structure is hardwired in the
lifting operators of the coarse time-steppers (Sect. 8).

An essential ingredient in our analysis is the dependence of the Markov chain
transition probability matrix upon the global activity of the network, via the firing
rate function f . Since this hypothesis is used to construct rate models as Markov
processes (Bressloff 2010), our lifting strategy could be used in equation-free schemes
for more general large-dimensional neural networks. An apparent limitation of the
procedure presented here is its inability to lift strongly unstable patterns with low
activity, as pointed out in Sect. 10. This limitation, however, seems to be specific to

123



Macroscopic coherent structures in a stochastic neural network 925

the model studied here: when Δ → 0, bumps destabilise with transients that are too
short to be captured by the coarse time-stepper.

A possible remedy would be to represent the pattern via a low-dimensional,
spatially-extended, spectral discretisation of themesoscopic profile (seeLaing (2006)),
which would allow us to represent the synaptic activity below the threshold h. This
would lead to a larger-dimensional coarse system, in which noise would pollute the
Jacobian-vector evaluation and the convergence of the Newton method. Variance-
reduction techniques (Rousset and Samaey 2013) have been recently proposed for
equation-free methods in the context of agent-based models (Avitabile et al. 2014),
and we aim to adapt them to large neural networks in subsequent publications.

Acknowledgements We are grateful to Joel Feinstein, Gabriel Lord and Wilhelm Stannat for helpful
discussions and comments on a preliminary draft of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Amari Si (1975) Homogeneous nets of neuron-like elements. Biol Cybern 17(4):211–220
Amari Si (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern

27(2):77–87
Avitabile D, Hoyle R, Samaey G (2014) Noise reduction in coarse bifurcation analysis of stochastic agent-

based models: an example of consumer lock-in. SIAM J Appl Dyn Syst 13(4):1583–1619
Avitabile D, Schmidt H (2015) Snakes and ladders in an inhomogeneous neural field model. Physica D

294:24–36
Baladron J, Fasoli D, Faugeras O, Touboul J (2012) Mean-field description and propagation of chaos in

networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J Math Neurosci 2(10):1–50
Bennett JEM (2015) Refinement and pattern formation in neural circuits by the interaction of traveling

waves with spike-timing dependent plasticity. PLoS Comput Biol 11(8):e1004,422
Brackley CA, Turner MS (2007) Random fluctuations of the firing rate function in a continuum neural field

model. Phys Rev E 75(4):041,913
Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, Berlin
Bressloff PC (2009) Stochastic neural field theory and the system-size expansion. SIAM J Appl Math

70(5):1488–1521
Bressloff PC (2010) Stochastic neural field theory and the system-size expansion. SIAM J Appl Math

70(5):1488–1521
Bressloff PC (2012) Spatiotemporal dynamics of continuum neural fields. J Phys A Math Theor

45(3):033,001
Bressloff PC (2014) Waves in neural media. Lecture notes on mathematical modelling in the life sciences.

Springer, New York
Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ (2001) Scalar and pseudoscalar bifurcations motivated

by pattern formation on the visual cortex. Nonlinearity 14(4):739–775
Bressloff PC, Kilpatrick ZP (2011) Two-dimensional bumps in piecewise smooth neural fields with synaptic

depression. SIAM J Appl Math 71(2):379–408
Bressloff PC, Webber MA (2012) Front propagation in stochastic neural fields. SIAM J Appl Dyn Syst

11(2):708–740
Cai D, Tao L, Shelley M, McLaughlin DW (2004) An effective kinetic representation of fluctuation-driven

neuronal networks with application to simple and complex cells in visual cortex. Proc Nat Acad Sci
101(20):7757–7762

123

http://creativecommons.org/licenses/by/4.0/


926 D. Avitable, K. C. A. Wedgwood

Chow C, Coombes S (2006) Existence and wandering of bumps in a spiking neural network model. SIAM
J Appl Dyn Syst 5(4):552–574

ColbyC,Duhamel J, GoldbergM (1995)Oculocentric spatial representation in parietal cortex. CerebCortex
5:470–481

Coombes S, Owen MR (2004) Evans functions for integral neural field equations with heaviside firing rate
function. SIAM J Appl Dyn Syst 3(4):574–600

CoombesS, SchmidtH,AvitabileD (2014)Neural field theory, chap. Spots: breathing, drifting and scattering
in a neural field model. Springer, Berlin, pp 187–211

Coombes S, Schmidt H, Bojak I (2012) Interface dynamics in planar neural field models. J Math Neurosci
2(9):1

Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials
for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770–785

Ermentrout GB (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Prog Phys
61(4):353–430

Ermentrout GB, Cowan JD (1979) A mathematical theory of visual hallucination patterns. Biol Cybern
34(3):137–150

Ermentrout GB, McLeod JB (1993) Existence and uniqueness of travelling waves for a neural network.
Proc R Soc Edinb Sect A Math 123:461–478

Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer, New York
Fairhall A, Sompolinsky H (2014) Editorial overview: theoretical and computational neuroscience. Curr

Opinion Neurobiol 25:v–viii
Faugeras O, Touboul J, Cessac B (2009) A constructive mean-field analysis of multi-population neural

networks with random synaptic weights and stochastic inputs. Front Comput Neurosci 3:1–28
Faye G, Rankin J, Lloyd DJB (2013) Localized radial bumps of a neural field equation on the Euclidean

plane and the Poincaré disk. Nonlinearity 26:437–478
Folias SE, Bressloff PC (2004) Breathing pulses in an excitatory neural network. SIAM J Appl Dyn Syst

3(3):378–407
Folias SE, Bressloff PC (2005) Breathers in two-dimensional neural media. Phys Rev Lett 95(20):208,107
Folias SE, Ermentrout GB (2012) Bifurcations of sationary solutions in an interacting pair of E-I neural

fields. SIAM J Appl Dyn Syst 11(3):895–938
Funahashi S, Bruce C, Goldman-Rakic P (1989) Mnemonic coding of visual space in the monkey’s dorso-

lateral prefrontal cortex. J Neurophysiol 61:331–349
Goldman-Rakic P (1995) Cellular basis of working memory. Neuron 14:477–485
Golomb D, Ermentrout GB (1999) Continuous and lurching traveling pulses in neuronal networks with

delay and spatially decaying connectivity. Proc Nat Acad Sci 96(23):13480–13485
Gong P, Robinson PA (2012) Dynamic pattern formation and collisions in networks of excitable elements.

Phys Rev E 85(5):055,101(R)
Haskell E, Nykamp DQ, Tranchina D (2001) A population density method for large-scale modeling of

neuronal networks with realistic synaptic kinetics. Neurocomputing 38–40:627–632
Haken H (2000) Phase locking in the lighthouse model of a neural net with several delay times. Prog Theor

Phys 139:96–111
Haken H (2000) Quasi-discrete dynamics of a neural net: The lighthouse model. Discret Dyn Nat oc 4:187–

200
Hutt A, Longtin A, Schimansky-Geier L (2008) Additive noise-induced turing transitions in spatial systems

with application to neural fields and the swift-hohenberg equation. Physica D 237(6):755–773
Izhikevich EM (2007) Dynamical systems in neuroscience: The Geometry of Excitability and Bursting.

MIT Press
Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Nat

Acad Sci 105(9):3593–3598
JirsaVK,HakenH (1997)A derivation of amacroscopic field theory of the brain from the quasi-microscopic

neural dynamics. Physica D 99(4):503–526
Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PG, Runborg O, Theodoropoulos C (2003) Equation-

free, coarse-grainedmultiscale computation: enablingmicroscopic simulators to perform system-level
tasks. Commun Math Sci 1(4):715–762

Kevrekidis IG, Samaey G (2009) Equation-free multiscale computation: algorithms and applications. Annu
Rev Phys Chem 60(1):321–344

123



Macroscopic coherent structures in a stochastic neural network 927

Kilpatrick ZP, Bressloff PC (2010) Stability of bumps in piecewise smooth neural fields with nonlinear
adaptation. Physica D 239(12):1048–1060

Kilpatrick ZP, Ermentrout GB (2013) Wandering bumps in stochastic neural fields. SIAM J Appl Dyn Syst
12(1):61–94

KuehnC,RiedlerM (2014) Large deviations for nonlocal stochastic neural fields. JMathNeurosci 4(1):1–33
Laing CR (2005) Spiral waves in nonlocal equations. SIAM J Appl Dyn Syst 4(3):588–606
Laing CR (2006) On the application of ‘equation-free modelling’ to neural systems. J Comput Neurosci

20(1):5–23
Laing CR, Frewen T, Kevrekidis IG (2010) Reduced models for binocular rivalry. J Comput Neurosci

28(3):459–476
Laing CR, Frewen TA, Kevrekidis IG (2007) Coarse-grained dynamics of an activity bump in a neural field

model. Nonlinearity 20(9):2127–2146
Laing CR, Kevrekidis IG (2015) Equation-free analysis of spike-timing-dependent plasticity. Biol Cybern

109(6):701–714
Laing CR, Troy WC (2003) PDE methods for nonlocal models. SIAM J Appl Dyn Syst 2(3):487–516
Laing CR, Troy WC, Gutkin B, Ermentrout GB (2002) Multiple bumps in a neuronal model of working

memory. SIAM J Appl Math 63(1):62–97
Ly C, Tranchina D (2007) Critical analysis of dimension reduction by a moment closure method in a

population density approach to neural network modeling. Neural Comput 19(8):2032–2092
Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-

Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A,
Chindemi G, Courcol JD, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S,
Gal E, Gevaert ME, Ghobril JP, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando
JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P,
Lasserre S, Le Bé JV, Magalhães BRC, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-
Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios
J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez JR, Riquelme JL, Rössert C, Sfyrakis K, Shi Y,
Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van
Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, Defelipe J, Hill SL, Segev I, Schürmann F (2015)
Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492

Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave.
J Neurosci 4(24):6862–6870

Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford
University Press

Omurtag A, Knight BW, Sirovich L (2000) On the simulation of large populations of neurons. J Comput
Neurosci 8(1):51–63

Osan R, Ermentrout B (2001) Two dimensional synaptically generated traveling waves in a theta-neuron
neural network. Neurocomputing 38–40:789–795

Owen MR, Laing CR, Coombes S (2007) Bumps and rings in a two-dimensional neural field: splitting and
rotational instabilities. New J Phys 9(10):378–401

Qi Y, Gong P (2015) Dynamic patterns in a two-dimensional neural field with refractoriness. Phys Rev E
92(2):022,702

Rankin J, Avitabile D, Baladron J, Faye G, Lloyd DJB (2014) Continuation of localized coherent structures
in nonlocal neural field equations. SIAM J Sci Comput 36(1):B70–B93

Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766
Rousset M, Samaey G (2013) Simulating individual-based models of bacterial chemotaxis with asymptotic

variance reduction. Math Models Methods ApplSci 23(12):2155–2191
Spiliotis KG, Siettos CI (2011) A timestepper-based approach for the coarse-grained analysis of micro-

scopic neuronal simulators on networks: Bifurcation and rare-events micro-to macro-computations.
Neurocomputing 74(17):3576–3589

Spiliotis KG, Siettos CI (2012) Multiscale computations on neural networks: from the individual neuron
interactions to the macroscopic-level analysis. Int J Bifurcation Chaos 20(01):121–134

Tuckerman LS, Barkley D (2000) Bifurcation analysis for timesteppers. In: Numerical methods for Bifur-
cations of dynamical equilibria. SIAM, New York, pp 453–466

van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI
functional connectivity. Eur Neuropsychopharmacol 20(8):519–534

Weinan W, Engquist B (2003) The heterogeneous multiscale methods. Commun Math Sci 1(1):87–132

123



928 D. Avitable, K. C. A. Wedgwood

Weinan E, Engquist B, Li X, Ren W, Vanden-Eijden E (2007) Heterogeneous multiscale method: a review.
Commun Comput Phys 2:367–450

Wasylenko TM, Cisternas JE, Laing CR, Kevrekidis IG (2010) Bifurcations of lurching waves in a thalamic
neuronal network. Biol Cybern 103(6):447–462

Werner H, Richter T (2001) Circular stationary solutions in two-dimensional neural fields. Biol Cybern
85(3):211–217

Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model
neurons. Biophys J 12:1–24

Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic
nervous tissue. Biol Cybern 13(2):55–80

Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev Neurosci 16(8):487–497

123


	Macroscopic coherent structures in a stochastic neural network: from interface dynamics to coarse-grained bifurcation analysis
	Abstract
	1 Introduction
	2 Model description
	2.1 State variables for continuum and discrete tissues
	2.2 Model definition

	3 Microscopic states observed via direct simulation
	3.1 Bumps
	3.2 Multiple-bumps solutions
	3.3 Travelling waves
	3.4 Macroscopic variables

	4 Deterministic model
	5 Macroscopic bump solution of the deterministic model
	5.1 Bump construction
	5.2 Bump stability
	5.3 Multi-bump solutions

	6 Travelling waves in the deterministic model
	6.1 Travelling wave stability

	7 Approximate probability mass functions for the Markov chain model
	7.1 Approximate probability mass function for bumps
	7.2 Approximate probability mass function for travelling waves

	8 Coarse time-stepper
	8.1 Coarse time-stepper for bumps
	8.2 Coarse time-stepper for travelling waves

	9 Root finding and pseudo-arclength continuation
	10 Numerical results
	10.1 Numerical Bifurcation analysis

	11 Discussion
	Acknowledgements
	References




