94 research outputs found

    On thermodynamic modeling and the role of the second law of thermodynamics in geophysics

    Get PDF
    The article contains a brief review of elements of thermodynamic modeling in theoretical geophysics. We motivate the existence of the second law of thermodynamics in macroscopic theoretical physics and demonstrate its evaluation. In particular we show its consequences in the construction of constitutive laws for a two-component poroelastic medium. This construction is also related to microstructural properties verified by means of the second law

    Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.

    Get PDF
    Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta

    Isospin symmetry at high spin studied via nucleon knockout from isomeric states

    Get PDF
    One-neutron knockout reactions have been performed on a beam of radioactive 53Co in a high-spin isomeric state. The analysis is shown to yield highly-selective population of high-spin states in an exotic nucleus with a significant cross section, and hence represents a technique that is applicable to the planned new generation of fragmentation-based radioactive beam facilities. Additionally, the relative cross sections among the excited states can be predicted to a high level of accuracy when reliable shell-model input is available. The work has resulted in a new level scheme, up to the 11+ band-termination state, of the proton-rich nucleus 52Co (Z = 27, N = 25). This has in turn enabled a study of mirror energy differences in the A = 52 odd-odd mirror nuclei, interpreted in terms of isospin-non-conserving (INC) forces in nuclei. The analysis demonstrates the importance of using a full set of J-dependent INC terms to explain the experimental observations

    Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness

    Full text link

    Water relations of leaves of barley infected with brown rust

    Full text link
    The water balance of brown rust (Puccinia hordei) infected barley seedlings was investigated. It was found that with the progression of the disease, the infected leaves lost their ability to maintain a favourable water status. This was attributed to tears in the cuticle, which occurred from day 5 after infection. In addition, a decreasing responsiveness of leaf diffusion resistance to bulk leaf water content was observed, probably due to the increasing proportion of water loss via the tears in the cuticle. An increase in leaf dry weight per unit area which was not associated with an increase in tissue volume, was found in diseased leaves. These responses to infection were cumulative with disease development, with no sudden effect of sporulation. Leaf turgor and water potentials were found to be lower in diseased leaves than in control leaves. © 1991 Academic Press Limited
    corecore