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Abstract

The article contains a brief review of elements of thermodynamic model-

ing in theoretical geophysics. We motivate the existence of the second law

of thermodynamics in macroscopic theoretical physics and demonstrate its

evaluation. In particular we show its consequences in the construction of con-

stitutive laws for a two-component poroelastic medium. This construction is

also related to microstructural properties veri�ed by means of the second law.

1 Introduction1

The second law of thermodynamics as a fundamental principle of macroscopic phy-

sics has a rather untypical history. It has been discovered by an engineer for purely

practical purposes and, as such, has not been questioned. However its justi�cation

within theoretical physics led to vehement discussions with, sometimes tragic con-

sequences such as the suicide of Boltzmann. It was related to pessimistic philosoph-

ical considerations (the �entropic death� of the universe), enthusiastic expectations

of some scientists that it may give them a tool to construct automatically models

for complicated processes, etc. During the last thirty years the situation became

normal � the second law of thermodynamics is now one of basic principles in the

construction of macroscopic models but it is, of course, not a panacea for all our

problems. Very often we can solely �nd some restrictions in form of inequalities but

not prescriptions for determining parameters. A prominent example of such a ther-

modynamic result is the inequality restricting the coe�cient of thermal expansion

�

0 � � �
1

vT
cp�;

where v; T denote the speci�c volume and the absolute temperature, respectively,

cp is the speci�c heat under constant pressure and � is the compressibility of the

�uid. This inequality says that one cannot construct a model of a �uid by assuming

incompressibility (� = 0) and simultaneously admitting the thermal expansion (� >

0) which is, however, done in the so-called Boussinesq approximation [1] important

for the stability analysis of �uids.

In this work we want to show some facets of the second law of thermodynamics

within theoretical geophysics. We begin with a motivation of the existence of this

law. To this aim we present a Gedankenexperiment whose origin goes back to

1This article contains a comprehensive presentation of my lectures during the series of confer-

ences GEOMATH organized by Prof. D. Kolymbas (Innsbruck).

1



Ehrenfest. This experiment was designed to reproduce considerations of Boltzmann

in which he was justifying the existence of macroscopic irreversibility derived from

a microscopic reversible model (the famous H-Theorem).

In the third section I present two simple examples of application of the second law

of thermodynamics. The �rst example stems from soil mechanics and it is related

to the evaluation of macroscopic material parameters by means of some microscopic

data. This evaluation relies on certain assumptions concerning properties of the

surface of contact between two di�erent media. Using the second law of thermody-

namics we demonstrate limitations on the practical applicability of classical results.

The second example illustrates two di�erent ways of exploitation of the second law.

We show that they yield the same results. The most complicated technical part of

the work is contained in section 4. We show some consequences of the second law for

the construction of a nonlinear two-component (hence � fully saturated) model of

poroelastic materials. The aim of this section is twofold. We present the technique

which is used in the evaluation of the second law in continuum physics, and, simul-

taneously, we obtain the thermodynamic framework for the most popular model of

porous materials used in acoustics of these media � the Biot model. Finally in the

�fth section we discuss some problems of construction of macroscopic parameters of

a linear model by means of the transition from the microscopic description. In this

example we show the limitations imposed on such a transition by thermodynamic

conditions applied to the microstructure and discussed in the example of section 2.

References to original works are rather scarce. I am quoting some more or less

standard books and solely as examples some papers. There exists a vast literature

on the subject and it would be irrational to account properly for all contributions

in the article of this size.

2 Motivation

The second law of thermodynamics has a somewhat mysterious ring among people

who do not work professionally with its applications. For this reason I begin this

work with a brief motivation for the existence of this principle of macroscopic physics.

I proceed to describe one of the most impressive models or Gedankenexperiments

demonstrating the source of irreversibility of macroscopic processes, and, conse-

quently, the origin of the second law of thermodynamics. This model which I quoted

in my book [2] goes back to Ehrenfest but it has been designed and discussed in

many details in an almost unknown book of Mark Kac [3].

Let us consider a circle on which we locate n points in equal distance from each

other. They are vertices of a polygon. A set S of m vertices is chosen, and these

points have a special property which we de�ne further. In each point n we locate a

ball which may be either white or black. Now we de�ne the dynamics of this model.

We move all balls simultaneously in � say � anticlockwise direction in discrete time

steps �t. In each step balls which were located in points of the set S change the
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colour. All other balls do not change their colour. For simplicity we assume that

at the initial instant of time t = 0 all balls are black. However this assumption is

immaterial for properties of the dynamics of the system. It is intuitively clear that

after su�ciently many steps and for the points of the set S randomly distributed

on the circle approximately a half of the balls will be white and the other half

black. Simultaneously if we rotate the system by the angle 4� it returns to its initial

state � each ball changes its colour even times 2m, and hence it will have again

the initial colour, i.e. su�ciently long processes are periodic. Moreover processes

are reversible, i.e. they are invariant with respect to the transformation t ! �t.

Such a transformation means that we have to rotate the system in the clockwise

direction. But this leads to the initial state again if we make su�ciently many

steps. In addition the clockwise rotation describes exactly the same processes as the

anticlockwise rotations � they become identical by renaming black balls to white

and vice versa.

In order to describe this model analytically we denote by Nb(t) the number of black

balls, and by Nw(t) the number of white balls. Initially Nb(t = 0) = n. Let Nb(S; t),

and Nw(S; t) denote the number of black and white balls, respectively, occupying

points of the set S. We have the following conservation laws

Nb(t) +Nw(t) = n; Nb(S; t) +Nw(S; t) = m: (1)

Simultaneously the following relations describe the discrete dynamics of the model.

The number of black balls after the time step t! t+�t is

Nb(t+�t) = Nb(t) +Nw(S; t)�Nb(S; t); (2)

because the balls occupying points of the set S in the instant of time t have changed

the colour in this step. Similarly for the white balls we have

Nw(t+�t) = Nw(t) +Nb(S; t)�Nw(S; t): (3)

Now we use the assumption on random distribution of points of the set S among

all points on the circle. After su�ciently long time lapse from the beginning of

motion we expect that the fraction of black balls in the set S will be the same as

the fraction of these balls in the set of all balls: Nb(S;t)
m

=
Nb(t)
n

. The same concerns

the white balls. Hence we have

Nb(S; t) =
m

n
Nb(t); Nw(S; t) =

m

n
Nw(t): (4)

The set of equations describing our model is now complete and we can proceed to

its analysis.

If we subtract equations (2), (3) and substitute the assumption (4) the following

equation for the increments follows

Nb(t+�t)�Nw(t+�t) =

�
1� 2

m

n

�
[Nb(t)�Nw(t)] : (5)
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This simple equation in �nite di�erences can be immediately solved and we obtain

Nb(t)�Nw(t)

n
=
Nb(0)�Nw(0)

n

�
1� 2

m

n

�
t

: (6)

The solution determines the surplus of black balls over the white balls at any instant

of time t. As Nw(0) = 0 we can write it also in the following form

Nb(t) +Nw(t) = n =) Nb(t) =
n

2

"
1 +

�
1� 2

m

n

�
t
#
: (7)

Reasonable values (existence of solutions under the assumption (4)!) follow under

the assumption that the number m of points in the set S is smaller than n

2
. Then

the surplus of black balls over the white balls will decrease and in the limit t!1

it will be zero, i.e. a half of the balls will be black and another half � white. This

agrees with our intuition. However it contradicts the periodicity of the system!

In the above considerations there is only one assumption. It is described by relations

(4). This assumption is an analogon of the famous �Stoÿzahlansatz� which Boltz-

mann made in his derivation of the kinetic theory of gases. The whole construction

presented above is a very simpli�ed version of the reasoning of Boltzmann and the

conclusion following from the relation (6) corresponds to his H-theorem. This theo-

rem is the prototype of the modern second law of thermodynamics. Simultaneously

the assumption (4) is a stochastic element of the model and such a feature possess

all our macroscopic models in physics.

In the situation of such a contradiction we either have to change the model or we

have to apply a di�erent interpretation of results. As both the assumption and

the result seem to correspond well with our intuition we try to apply a di�erent

interpretation.

If the number of balls corresponded to the number of particles of a real substance

(say a gas such as the air) then in typical conditions on the earth it would be of

the order � 1023 (Avogadro number). For the time step �t = 10�2 sec this would

mean that the system would return to its initial state (reccurence time) after 2 �1021

seconds, i.e. after approximately 6 � 1013 years. This is more than 1000 times longer

than the lifetime of the universe since the big bang! Consequently we may consider

the solution (6) to be a good approximation if the time lapse from the beginning of

the process is neither too long nor too short.

Certainly the above very simple model cannot give even a hint whether real pro-

cesses in nature are reversible or even periodic in a sense of very long observation

times. However it justi�es the statement that a stochastic element involved in any

description of macroscopic processes in realistic times of observation yields irre-

versibility. This is also the reasonable approach in our macroscopic theories of

geophysical systems.

The theory constructed by Boltzmann yields a criterion for the time behaviour

described by such solutions as (6). Namely for isolated systems, i.e. systems which
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do not interact with the external world, one can introduce a function which depends

on parameters of the system and which grows in time until it reaches a limit state

� the thermodynamic equilibrium � and then remains constant. We denote this

function by H and call it the entropy function. We have then

dH

dt
� 0; (8)

in each instant of time for real processes, i.e. for solutions of equations describing

the system. In a di�erent way without refering to stochastic arguments unknown at

that time such a criterion for admissibility of models has been introduced by Rudolf

Clausius in 1850 who invented the name entropy and by William Thomson Kelvin

in 1851 who called it the degradation of energy. Both were motivated by the famous

work of Nicolas Carnot on the e�ciency of heat engines published in 1824.

The inequality (8) which is predesignated to lead to the second law of thermo-

dynamics possesses already the most important feature of this law. It predicts the

relaxation of isolated systems to the thermodynamic equilibrium in which
dH

dt
= 0.

If the system is not isolated from the external world there exists an exchange of

mass, momentum, energy etc. between the system and the rest of the world which

may contribute to changes of H. Then we have to correct the inequality (8) by a

supply term � describing the amount of the entropy H carried into the system from

the external world per unit time

dH

dt
+ � � 0: (9)

As the entropy itself, it depends on parameters of the system. In the next section

we show some simple examples of such a supply.

The entropy function H and its supply � are de�ned for the whole system. However

we can extend this statement requiring that this law must hold as well for some

subsystems de�ned, for instance, on a part P of the domain B occupied by the

system in the three-dimensional Euclidean space of motion. In such cases, most

common in practical applications, it is also required that the entropy is an additive

function, i.e for two separate subsystems P1;P2; with P1 \ P2 = ;, the entropy

of the sum of these two systems is equal to the sum of entropies: H (P1 [ P2) =

H (P1) +H (P2). Certain additional mathematical assumptions which are the same

as in any continuum model (e.g. [4]) lead then to the existence of the entropy density

� which satis�es the following relations

H (P) =

Z
P

��dV;
d

dt

Z
P

��dV +

I
@P

h � ndS �

Z
P

�sdV

| {z }
=�

� 0: (10)

In these relations � is called the speci�c entropy, � is the mass density of the system,

i.e. M (P) =
R
P

�dV is the mass of P, h denotes the �ux of entropy through the
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unit surface and in the unit time, s is the so-called entropy radiation to the external

world, and n denotes a unit normal vector of the surface (boundary) @P of the

system. This inequality can be written in the local form by means of the Stokes

theorem on the transformation of surface integrals for closed surfaces into volume

integrals
@ (��)

@t
+ div (��v + h)� �s � 0; (11)

where v is the velocity of particles of the system. It must hold for all real processes

in the system in almost all points of the set B. The last condition means that the

local form (11) can be violated in single points, on some lines or surfaces of the

system for which, however, the global form (10) still should be true in the limit

sense.

The relation (11) � the so-called entropy inequality � is the modern form of the

second law of thermodynamics for continua.

Further in this work we show how this condition can be evaluated in the construction

of various models in geophysics. In the next section we discuss �rst two very simple

examples which have, however, a certain practical bearing.

3 Two simple examples of evaluation of the second

law

We begin the demonstration of consequences of the second law of thermodynamics

with an example appearing in procedures of transformation of data for real granular

materials into a macroscopic multicomponent model. We return to this problem in

its full generality further in this work. The purpose of the present analysis is solely

to derive restrictions for the microscopic model. We describe it for the so-called

unjacketed test of a two-component granular material (e.g. [5, 6])2. In this model

we consider homogeneous, quasistatic processes in a heap of a compressible granular

material immersed within a �uid. On the upper surface of the �uid the pressure

p
0 is acting. We assume that the system preserves a constant temperature T = T0

(isothermal processes).

Figure 1: Scheme of the unjacketed test

2I am grateful to Dr. W. Dreyer (WIAS, Berlin) for suggesting this problem.
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Processes in this system are described by means of the following variables: M
S

� the mass of the solid granular material, MF

i
� the mass of the �uid inside the

pores of the granular material, MF

e
� the mass of the �uid outside the heap, V S

� the volume of the solid granular material, V F

i
� the volume of the �uid inside

the heap, V F

e
� the volume of the �uid outside the heap. We call the variablesn

M
S
;M

F

i
;M

F

e
; V

S
; V

F

i
; V

F

e
; T0

o
the process parameters. The purpose is to describe

conditions between the heap and the exterior.

We proceed to exploit two laws of thermodynamics: the conservation of energy

and the second law of thermodynamics. Let us denote by _Q the amount of

the energy which is carried into the system in a nonmechanical form (heat supply)

from the external world in the unit time. Then the change of the energy E in the

quasistatic process (the in�uence of the kinetic energy is neglected!) is described by

the following �rst law of thermodynamics (conservation of energy)

dE

dt
+ _Q+ p

0
d

dt

�
V
S + V

F

i
+ V

F

e

�
| {z }

mechanicalworking

= 0; (12)

The heat supply _Q is necessary for processes to pertain to isothermal conditions.

The second law of thermodynamics has the following form

dH

dt
+

_Q

T0
� 0; (13)

where the form of the entropy supply � =
_Q

T0
follows from the original considerations

of Carnot and Kelvin. We show later that this is not always an appropriate form of

such a relation.

Substitution of (12) in (13) yields

d	

dt
+ p

0
d

dt

�
V
S + V

F

i
+ V

F

e

�
� 0; (14)

where

	 := E � T0H; (15)

is the so-called Helmholtz free energy. As the energy E and the entropy H it is

assumed to be additive, i.e. it is in our example the sum of the free energy of the

solid, and of the two parts of the �uid.

We make now the constitutive assumption which de�nes materials involved in

the process. As the free energies possess densities this assumption shall be made for

densities in a homogeneous process. Namely

	 =M
S
 
S

 
T0;

V
S

MS

!
+M

F

i
 
F

 
T0;

V
F

i

M
F

i

!
+M

F

e
 
F

 
T0;

V
F

e

MF
e

!
; (16)
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i.e. we assume that the densities of free energy depend on the temperature (a

constant in our case), and on the speci�c volume V

M
for each component. The latter

is, of course, identical with the inverse of the mass density, and the speci�c volumes

have been chosen solely for historical reasons. Both �uid contributions contain the

same function  F (T0; �) because it is the same �uid in the heap and outside of the

heap. Now it follows from (14) by means of the chain rule of di�erentiation

 
 
S �  

S0
V
S

MS

!
dM

S

dt
+

 
 
F

i
�  

F 0

i

V
F

i

M
F

i

!
dM

F

i

dt
+

 
 
F

e
�  

F 0

e

V
F

e

MF

e

!
dM

F

e

dt
+ (17)

+
�
p
0 +  

S0

� dV S

dt
+
�
p
0 +  

F 0

i

� dV F

i

dt
+
�
p
0 +  

F 0

e

� dV F

e

dt
� 0;

where the indices i; e denote the evaluation at the corresponding values of the ar-

guments, and the prime denotes the derivative with respect to the speci�c volume.

This inequality must be satis�ed for all real processes in our system. However real

processes must satisfy the following constraints

M
S = const:; M

F

i
+M

F

e
= const:; (18)

which are, of course, the mass conservation laws. Otherwise the values of time

derivatives in (17) are arbitrary. It means that the inequality can be satis�ed solely

in the case when the coe�cients of these derivatives vanish identically. We obtain

p
S := �

d 
S

d

�
V S

MS

� = p
0

; p
F

i
:= �

d 
F

d

�
V F

MF

�
������
V F

MF
=
V F

i

MF

i

= p
0

; (19)

p
F

e
:= �

d 
F

d

�
V F

MF

�
������
V F

MF
=
V Fe

MF
e

= p
0

;

 
F

i
�  

F 0

i

V
F

i

M
F

i

=  
F

e
�  

F 0

e

V
F

e

MF

e

=)  
F

i
+ p

F

i

V
F

i

M
F

i

=  
F

e
+ p

F

e

V
F

e

MF

e

;

where pS is the pressure in the solid, pF
i
� pressure in the �uid inside the heap (pore

pressure), pF
e
� pressure in the �uid outside the heap.

The last condition contains the combination of the Helmholtz free energy with the

pressure contribution. This combination is called the free enthalpy. The con-

dition means that this quantity must be the same in the �uid inside of the heap

and outside of the heap (continuity across the interface between the two parts).

Simultaneously the �rst three relations reduce the number of necessary constitutive

relations from three to two for the two Helmholtz free energies. Let us note that the

above relations reduce the second law to the identity which means that the system

is in thermodynamic equilibrium.
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According to the above relations we can make still a further simpli�cation provided

constitutive relations are monotone with respect to the speci�c volume3

p
F

i
= p

F

e
� p

0 =)
V
F

i

M
F

i

=
V
F

e

MF
e

: (20)

Hence the mass density of the �uid is the same inside and outside of the heap and

the condition for the enthalpy becomes trivial.

The above considerations yield rather trivial results anticipated in previous works

on this subject. However they expose simpli�cations which must be made in order

to obtain the condition (20). We list the most important of them.

� The solid granular material must react on volume changes in an elastic way,

i.e. its pressure is dependent solely on changes of the mass density M
S

V S . For

instance we have not incorporated any viscoplastic changes of the volume;

� The �uid is ideal, i.e. its pressure depends also solely on changes of mass

density. We have neglected, for instance, viscous properties or friction between

the �uid in the heap and the grains.

Viscoplastic deformations of the solid and viscous properties of the �uid would

require a considerable modi�cation of the second law (14).

� There is no in�uence of capillary forces which would have to appear in the

energy balance through an additional term de�ned on the contact surface

(interface) between the �uid in the heap and outside of the heap;

� All processes are homogeneous, i.e we neglect, for example, the pattern for-

mation (e.g. a heterogeneous deformation in the form of layered structure) in

the heap;

� The heap is fully saturated by the �uid;

� There is no mass exchange between the solid and the �uid, and phase trans-

formations (e.g. evaporation and condensation) are excluded.

Certainly one can add more items to this list.

The results for this simple example show the limitations which are imposed on the

classical Gassmann relations between microscopic and macroscopic properties of

granular materials (see: Sect. 5 for the presentation of this problem), and, simulta-

neously, they indicate the way in which these relations can be improved. Clearly, if

3Such a relation would not hold, for instance, in the case of hysteresis (i.e. materials with

a phase transformation) in which at least two di�erent mass densities correspond to the same

pressure.
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any of the above listed issues will be corrected the continutity of the pressure in the

�uid (20) must be replaced by the continuity of the enthalpy (19)3.

We proceed to discuss the second simple example. We investigate thermodynamic

limitations for the so-called rigid heat conductor. It is a solid in which solely

the temperature �eld T (x; t) determines processes. The �eld equation for this �eld

follows from the energy conservation law. In the local form it is as follows

�
@"

@t
+ div q = �r; (21)

where � is the constant mass density " denotes the speci�c internal energy per unit

mass q is the so-called heat �ux vector, and r � radiation density. In a further

thermodynamic analysis we neglect the last contribution because it is controlled by

external agents and, for this reason, can be switched o� without any in�uence on

properties of the material. In order to transform the equation (21) into the �eld

equation for the temperature T we have to specify the dependence of " and q on

the temperature and its derivatives. In the classical case it is assumed that the

following simpli�ed caloric relation for the speci�c energy and the Fourier relation

for the heat �ux, respectively, hold true

" = " (T ) ; q = �K (T )g; g := gradT: (22)

Substitution in (21) yields the classical heat conduction equation

�cv

@T

@t
= div (K gradT )q+ �r; cv :=

d"

dT
: (23)

We evaluate the second law for a slightly more general case. Namely we assume that

the speci�c energy ", the heat �ux q, the speci�c entropy �, and the entropy �ux h,

are functions of the temeperature T and its gradient gradT . In addition we assume

this system to be isotropic. We specify consequences of the latter assumption later.

Then the energy balance (21) has the form

�

 
@"

@T

@T

@t
+
@"

@g
�
@g

@t

!
+
@q

@T
� g +

@q

@g
� ( gradg) = 0; (24)

and the entropy inequality (11) is as follows

�

 
@�

@T

@T

@t
+
@�

@g
�
@g

@t

!
+
@h

@T
� g +

@h

@g
� ( gradg) � 0: (25)

We have to evaluate the above inequality provided the �eld T satis�es its �eld

equation, i.e. it must satisfy the above energy conservation law. This condition is a

constraint on the class of admissible solutions of the inequality. Such constraints

are eliminated in modern thermodynamics by means of Lagrange multipliers. We
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discuss this issue in some details further in this work. However, in order to show

that the choice of a method for the evaluation of the second law of thermodynamics

is solely a matter of convenience we proceed here by means of a direct method and

then we show that the results are the same.

Namely among all possible local values of derivatives of the temperature the deriva-

tive, say, with respect to time can be calculated from the energy conservation pro-

vided the coe�cient cv =
@"

@T
is di�erent from zero. This shall be so assumed. Then

@T

@t
= �

 
@"

@T

!
�1 ("

@"

@g
�
@g

@t

#
�

1

�

"
@q

@T
� g +

@q

@g
� ( gradg)

#)
: (26)

On the right hand side of this relation derivatives can be chosen arbitrarily because

no other �eld equation appears in this model. We substitute this result in the

entropy inequality (25). We obtain then

�

"
�
@"

@g
�
@�

@g

#
�
@g

@t
+

"
�
@q

@T
�
@h

@T

#
� g+

+

"
�
@q

@g
�
@h

@g

#
� grad g �0; �:=

 
@�

@T

! 
@"

@T

!
�1

: (27)

As the derivatives
@g

@t
; grad g contribute in linear way to this inequality and they

can be chosen arbitrary their coe�cients must vanish. Hence we obtain

�
@"

@g
�
@�

@g
= 0; sym

 
�
@q

@g
�
@h

@g

!
= 0: (28)

We proceed to use the assumption of isotropy. Then the vector functions q;h must

depend on the vector argument in the following way

q = �K
�
T; g

2
�
g; h = �H

�
T; g

2
�
g; g

2 := g � g: (29)

Consequently the second relation (28) can be written in the form

� (�K �H) 1� 2

 
�
@K

@g2
�
@H

@g2

!
g 
 g = 0: (30)

Separation of the deviatoric and spherical parts in this relation yields

�K �H = 0; �
@K

@g2
�
@H

@g2
= 0: (31)

Now the substitution of the �rst identity in the second one yields

@�

@g2
= 0 =)

@�

@T
=� (T )

@"

@T
=) � =

1

T
; (32)
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where the classical Gibbs thermostatics (i.e. Gibbs equation in the thermodynamic

equilibrium: d� = 1
T
(d"+ pdV ), dV � 0, V - volume; e.g. see: [7]) has been used

in the last implication. This yields

H =
1

T
K =) h =

1

T
q: (33)

We have anticipated this result in the previous example.

It is convenient to introduce the Helmholtz free energy function

 := "� T�: (34)

Then according to (28),(32)

@ 

@T
=
@"

@T
� T

@�

@T
� � = �� =) " =  + T

@ 

@T
;

@"

@g
� T

@�

@g
= 0 =)  =  (T ) =) " = " (T ) : (35)

Hence we have proven that the speci�c energy cannot depend on the temeperature

gradient. This has been assumed in the simpli�ed derivation of the heat conduction

equation mentioned previously.

It remains to exploit the remaining part of the inequality (27) which contains a

nonlinear dependence on the temperature gradient g"
�
@q

@T
�
@h

@T

#
� g �0: (36)

This is the so-called residual inequality which de�nes the dissipation in the

system. If it is zero we have the state of thermodynamic equilibrium. Bearing the

results (32), (33) in mind we can write this inequality in the following form

1

T 2
Kg

2 � 0: (37)

Hence the heat conductivity K cannot be negative. This means that the heat �ux q

is oriented from the hotter to the colder part of the body. This property is sometimes

mistakenly identi�ed with the second law of thermodynamics.

We have completed the exploitation of the second law of thermodynamics for our

example. However we repeat these considerations in a di�erent way to demonstrate

the application of Lagrange multipliers in thermodynamics. This method has been

designed in the PhD-Thesis of I-Shih Liu in 1973 (e.g. see [7, 2]). He has shown that

instead of the direct elimination of some derivatives as we did above one can exploit

an extended inequality in which all �eld equations are incorporated as constraints.

In our simple example we have to replace the inequality (11) by the following one

�
@�

@t
+ divh��

 
�
@"

@t
+ div q

!
� 0; (38)
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where the Lagrange multiplier �, similarly to ";q; �;h; can be a function of T and

g =gradT . The existence of this multiplier and its dependence on the constitutive

variables follows from Liu's theorem. If now the �eld T is chosen in such a way that

it satis�es the �eld equation then the expression in the brackets vanishes and we

have to satisfy the entropy inequality in the usual form. If it is not the case then

the Lagrange multiplier must be chosen accordingly in order to correct the result

for a non-zero value of the expression in the brackets. Hence this is indeed the same

procedure as the one appearing in the classical mechanics with constraints.

The exploitation of the inequality (38) proceeds now in the same way as before. The

chain rule of di�erentiation yields

@T

@t

"
�
@�

@T
� ��

@"

@T

#
+
@g

@t
�

"
�
@�

@g
� ��

@"

@g

#
+

+g�

"
@h

@T
� �

@q

@T

#
+ gradg�

"
@h

@g
� �

@q

@g

#
� 0: (39)

This inequality must hold for arbitrary derivatives
@T

@t
;
@g

@t
; gradg and, simultane-

ously, it is linear with respect to these derivatives. Hence their coe�cients must

vanish and we obtain

@�

@T
� �

@"

@T
= 0;

@�

@g
� �

@"

@g
= 0; sym

 
@h

@g
� �

@q

@g

!
= 0; (40)

and there remains the residual inequality

g�

"
@h

@T
� �

@q

@T

#
� 0: (41)

These relations are identical with (27)2, (28), (36). Hence together with the isotropy

assumption we obtain exactly the same results as before.

Further in this work we use solely the method of multipliers. It seems to be simpler

in the evaluation and it possesses certain additional properties convenient in the

analysis of the so-called hyperbolic �eld equations which we will not discuss in this

work.

4 Simple and Biot-type poroelastic nonlinear mod-

els

Macroscopic modeling of porous and granular materials belongs to the class of con-

tinuum theories. For many practical purposes it is su�cient to construct a single

component model similar to this of elasticity or plasticity (e.g. hypoplasticity [8]),

and, if necessary to extend such a model by a di�usion equation describing the

13



relative motion of real components. Such procedures are commonly used in soil me-

chanics. However, dynamics and propagation of waves in porous materials as well

as nonlinear e�ects such as large deformations, swelling, mass exchange processes,

etc. require more sophisticated modeling. This follows usually the line proposed for

mixtures of �uids by C. Truesdell in 1957 (see: [4, 9]) and extended by R. Bowen in

1982 ([10, 11]) to multicomponent porous materials. A linear multicomponent model

of porous materials has been designed much earlier � in 1941� by Biot (see the col-

lected papers of Biot on this subject [12]). This model and its various modi�cations

are still successfully used in geophysical and biomechanical applications.

In this section we discuss some thermodynamic aspects of such a modeling. We begin

with an introduction to a nonlinear continuum model in the so-called Lagrangian

description and then present few important conclusions from the second law of

thermodynamics for poroelastic materials. At the end of the section we present a

linear version of poroelastic model which will be discussed in the next section of this

work.

We consider a porous medium whose pores are �lled with a mixture of A �uid

components. The model is constructed on a chosen reference con�guration B0 of

the skeleton (the solid component), i.e. all �elds are functions of a spatial variable

X 2B0, and time t 2 T . We consider a thermomechanical model in which the

governing �elds are as follows:

1. �S � mass density of the skeleton in the reference con�guration,

2. ��; � = 1; : : : ; A � partial mass densities of �uid components refering to the

unit volume of the reference con�guration of the skeleton,

3. �xS � velocity �eld of the skeleton,

4. FS � deformation gradient of the skeleton,

5. �x�; � = 1; : : : ; A � velocity �elds of �uid components,

6. T - absolute temperature of the skeleton,

7. n � porosity (the volume fraction of voids).

The mechanical part of these �elds, i.e. �elds 1. � 5., do not require any special jus-

ti�cation. It should be solely stressed that the multiple velocity �eld
n
�xS; �x�

o
means

that we include the di�usion in the system which is the main di�erence between this

model and a model of composite materials. However, a single temperature requires

already some explanation. In some physical systems such as ionized gases (plasma)

di�erent temperatures of components are quite natural. In plasma, for instance,

electrons and ions possess di�erent temperatures because they relax very slowly to

a thermodynamic equilibrium with a common temperature. This is due to a big

di�erence in mass of charged particles: ions � heavy and electrons � light. In soils

di�erent temperatures of components are primarily related to a di�erent rate of heat
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transfer in a solid and in a �uid. Consequently, in many practical applications (for

example in processes of freezing of water in soils) it would be justi�ed to introduce

more than only one temperature common for all components. This is not being done

because a thermodynamics of such systems does not exist yet.

Another problem is connected with the choice of porosity as the only microstruc-

tural variable. First of all let us note that some properties of the microstructure are

already appearing due to the fact that we are using a multicomponent model. One

could work in such a model with a total mass density � := �
S +

AP
�=1

�
� and concen-

trations c� :=
�
�

�
. This would be the case for a mixture of �uids and concentrations

would be microstructural variables of such a model. The presence of a solid requires

an extension. For instance for empty pores all concentrations would be zero but

still the microstructure would not be trivial. Hence the scalar �eld of porosity is a

minimum extension which we have to make for porous materials. It does not seem

to make sense to introduce any further volume fractions if there is solely one solid

component. However, in many practical applications, for instance � for rocks, one

may need two porosities (e.g. [13]) � one on the microscale (say � 10�2m) and one

on the macroscale of big macrocracks and clefts (say � 10m). There may be also

the necessity to incorporate some additional parameters describing the geometry of

channels such as tortuosity. We do not consider these generalizations in this work

even though some of them can be treated by thermodynamic methods.

The above listed �elds can be, of course, written in the Eulerian description char-

acteristic for mixtures of �uids. We have then

�
S

t
(x; t) := �

S

�
f�1 (x; t) ; t

�
J
S�1

�
f�1 (x; t) ; t

�
; J

S := detFS
;

�
�

t
(x; t) := �

�

�
f�1 (x; t) ; t

�
J
S�1

�
f�1 (x; t) ; t

�
; � = 1; : : : ; A;

vS (x; t) := �xS
�
f�1 (x; t) ; t

�
; (42)

v� (x; t) := �x�
�
f�1 (x; t) ; t

�
; � = 1; : : : ; A;

T (x; t) := T

�
f�1 (x; t) ; t

�
; n (x; t) := n

�
f�1 (x; t) ; t

�
; (43)

where the function of motion of the skeleton

x = f (X; t) ; (44)

is related to the velocity of the skeleton �xS and to its deformation gradient FS in

the following way

�xS =
@f

@t
; FS = Grad f : (45)

All �elds listed above have purely macroscopic interpretation and, as usual in the

continuum theory of mixtures, particles of all components are appearing simulta-

neously in each point of the domain. This means that processes which lead to a

separation of components must be modelled on di�erent domains separated by an
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interface. For instance the contact between a porous material saturated with water,

and a porous material with empty pores requires the application of two models to two

di�erent domains and requires some contact conditions on the interface surrounding

the saturated domain.

Macroscopic interpretation of �elds yields frequently misunderstandings because

some parts of the porous scienti�c community, particularly this stemming from the

tradition of the pioneering work of Terzaghi, work with the so-called real (true)

quantities, e�ective stresses, etc. Consequently in their interpretation the deforma-

tion of the skeleton is not describing changes of the macroscopic geometry of the

system as it is the case in the present model but rather true deformations of grains

on the microscopic level (real solid material), the partial mass densities are not

refering to a common macroscopic volume of mixture but rather to partial volumes

occupied by real components, etc. We return to this problem later in the work.

We proceed to de�ne �eld equations for the above �elds. Most of them follow as

usual from partial balance equations.

In particular we have4

partial mass balance equations

E�
S

:=
@�

S

@t
� �̂

S = 0;

E�
�

:=
@�

�

@t
+ Div

�
�
� �X�

�
� �̂

� = 0; � = 1; : : : ; A; (46)

�X� := FS�1
�
�x� � �xS

�
;

partial momentum balance equations

Ev
S

:=
@

�
�
S�xS

�
@t

�
h
DivPS + p̂S + �

SbS
i
= 0;

Ev
�

:=
@ (���x�)

@t
+ Div

�
�
��x� 
 �X�

�
� (47)

� [ DivP� + p̂� + �
�b�] = 0; � = 1; : : : ; A;

partial energy balance equations

E"
S

:=
@

@t

�
�
S

�
"
S +

1

2
�xS2

��
�

�
h
Div

�
QS �PST�xS

�
+ �

SbS � �xS + �
S
r
S + r̂

S

i
= 0;

E"
�

:=
@

@t

�
�
�

�
"
� +

1

2
�x�2

��
+ Div

�
�
�

�
"
� +

1

2
�x�2

�
�X�

�
� (48)

�
h
Div

�
Q� �P�T�x�

�
+ �

�b� � �x� + �
�
r
� + r̂

�

i
= 0; � = 1; : : : ; A;

4we de�ne equations by various E-symbols for typogra�cal reasons � it simpli�es the form of

the entropy inequality appearing in further considerations.

16



balance equation of porosity

En :=
@n

@t
+ DivJ� n̂ = 0: (49)

In these equations, all functions are de�ned on the reference con�guration B0 of the

skeleton. In this sense we may call it the Lagrangian description even though

partial balance equations for �uid components contain convective parts with respect

to the corresponding Lagrangian velocities �X�.

The two-point tensors PS
;P� denote the Piola-Kirchho� partial stress tensors,

bS;b� are partial body forces, "S; "� are partial densities of the internal energy,

QS
;Q� � partial heat �uxes, rS; r� are partial energy radiations, J is the �ux of

porosity, and all quantities with a hat denote productions.

The balance equation of porosity (49) requires some explanation. We have argued

in previous works on this subject (e.g. [14], [15]) that the balance equation for

n follows from an averaging procedure for a representative elementary volume ac-

counting for geometrical properties of the microstructure. However this argument

is not needed if we make an extension of the continuous model of mixtures on the

macroscopical phenomenological level. In such a case a new scalar �eld satis�es in

the most general case a balance equation. Second order equations for microstruc-

tural variables appearing in some works on this subject (e.g. [16, 17]) indicate that

most likely two variables rather than one additional microstructural variable should

be introduced and one of them has to be eliminated from the model by substitution

of one balance equation in another. The above balance equation for porosity speci-

�ed for two-component poroelastic materials does not require additional boundary

conditions � it possesses all properties of an evolution equation. Thermodynamic

considerations indicate that the �ux J results from the di�usion (relative motion of

�uid components with respect to the skeleton), and the source n̂ describes relaxation

to the thermodynamic equilibrium.

Certainly we do not need all partial energy balance equations if we have to determine

only one temperature �eld T . In such a case one relies on the bulk balance which

follows from (48) by addition of equations for all components. Due to its relative

complexity we will not present this equation in this work and refer the reader to the

paper [18].

All bulk equations follow in the same way by adding partial equations. We make an

assumption similar to this introduced by C. Truesdell for mixtures of �uids [9] that

the bulk productions of mass, momentum, and energy vanish, i.e. the corresponding

balance equations reduce to conservation laws. Hence

�̂
S +

AX
�=1

�̂
� = 0; p̂S +

AX
�=1

p̂� = 0; r̂
S +

AX
�=1

r̂
� = 0: (50)

Under these conditions we can introduce bulk quantities which correspond to those

introduced by Truesdell for �uid mixtures which satisfy conservation laws of a single
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component continuum. Due to the fact that we have chosen one of the components

� the skeleton � as a reference the form of these laws di�ers from the classical

Lagrangian form of conservation equations of a single continuum.

As an example which we use later to transform the entropy inequaliy we present

here two bulk quantities � the speci�c energy " and the bulk heat �ux vector Q �

whose de�nitions follow by addition of partial energy equations E"
S

+E"
�

. We quote

here the results of the work [18]:

�" :=
AX

�=1

�
�
"
� + �

S
"
S + (51)

+
1

2

"
�
SCS �

�
_X
 _X

�
+

AX
�=1

�
�CS �

�
�X� � _X

�


�
�X� � _X

�#
;

Q :=
AX
�=1

Q� +QS +
AX

�=1

�
�
"
�

�
�X� � _X

�
� �

S
"
S _X�

�
AX

�=1

P�TFS

�
�X� � _X

�
+PSTFS _X+ (52)

+
1

2

"
AX

�=1

�
�

�
�X� � _X

�


�
�X� � _X

�


�
�X� � _X

�
� �

S _X
 _X
 _X

#
CS

;

where

CS := FSTFS
; � _X :=

AX
�=1

�
� �X�

; � := �
S +

AX
�=1

�
�
: (53)

Obviously the bulk �ux contains the contribution of partial heat �uxes. However it

is related as well to the transport of energy due to the relative motion of components

as well as the working of stresses on these relative motions. Hence in contrast to the

single component continuum it is di�erent from zero even in the case of isothermal

processes in which partial heat �uxes vanish.

The formal thermodynamic construction of a continuous model proceeds as follows.

We need �eld equations for the following set F of �elds

F :=
n
�
S
; �

�
;FS

; �xS; �x�; T; n
o
; � = 1; : : : ; A: (54)

They follow from the balance equations for mass and momentum (46), (47), added

energy balance equations (48), porosity balance (49), and relations (45) which indi-

cate the following integrability condition

EF :=
@FS

@t
� Grad �xS = 0: (55)

This plays the role of balance equation for the deformation gradient FS.
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However, in order to transform these equations into �eld equations we have to per-

form the so-called closure. Namely the set R of the following quantities

R :=
n
�̂
�
;PS

;P�
; p̂�; ";Q;J;n̂

o
; � = 1; : : : ; A; (56)

must be speci�ed in terms of �elds and their derivatives in order to close the system.

This is the constitutive problem de�ning materials contributing to the mixture.

The mass and momentum sources for the skeleton do not appear in the above list

because, according to (50), they are not independent. Let us remark that in many

cases of practical bearing additional constitutive relations may have the form of

evolution equations. For instance this is the case when the skeleton has some plastic

properties. Then the e�ective stress must satisfy an evolution equation � the so-

called Prandtl�Reuss equation for models of metals under small deformations or

Kolymbas equation for hypoplastic models of soils [8]. When mass sources result

from chemical reactions or adsorption/desorption processes their form is also given

by an evolution equation, for instance by the Langmuir equation for adsorption

processes.

We do not consider such problems in this work and limit further our attention to

the so-called poroelastic materials. This assumption yields realistic models for

biological tissues (e.g. lungs), woods, spongs, rocks etc. It is not very realistic for

soils whose elastic properties are limited to some incremental processes. However

even in this case such models are useful in description of waves of small amplitude,

and, consequently, in a nondestructive testing of soils. Then the set of constitutive

variables is as follows

C : =
n
�
S
; �

�
;FS

; �X�
; T;G;n;N

o
; (57)

G : = GradT; N :=Gradn; � = 1; : : : ; A;

Usually this set is still much too complicated for the full thermodynamic analysis and

one considers simpler models. For example in the case of a simple two-component

isotropic isothermal model without mass exchange scalar constitutive func-

tions depend on the following set of constitutive variables

Csimple :=
n
�
F
; I; II; III; IV; V; V I; n

o
; (58)

where the six invariants I; : : : ; V I are de�ned as follows

I := trCS
; II :=

1

2

�
I
2 � trCS2

�
; III := detCS

; (59)

IV := �XF � �XF
; V := �XF �CS �XF

; V I := �XF �CS2 �XF
;

with �XF being the Lagrangian velocity of the single �uid component: � = F . We

present some results for such a model further in this paper.

The fundamental assumption of a continuous modeling has the form of the following

constitutive relation

R = R (C) ; (60)
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where the mappingR is assumed to be at least once continuously di�erentiable. The

above relation is a short-cut notation for constitutive relations for each quantity of

the set (56) which should be functions of variables (57).

The constitutive functions (60) are said to be thermodynamically admissible if

any solution of �eld equations satis�es identically the following entropy inequality

@ (��)

@t
+ Div

�
�� _X+H

�
� 0; � = � (C) ; H = H (C) : (61)

This is the Lagrangian form of the second law of thermodynamics proposed by I.

Müller [7] for mixtures. The bulk entropy and the bulk entropy �ux H are related

to partial quantities in the following way

�� :=
AX

�=1

�
�
�
� + �

S
�
S
;

H =
AX
�=1

H� +HS +
AX

�=1

�
�
�
�

�
�X� � _X

�
� �

S
�
S _X: (62)

The �ux H is not proportional to the bulk heat �ux Q as it would be the case for

many single component models. This is due to the fact that both �uxes contain

explicit contributions of relative velocities. However we may still assume that the

Fourier relations hold for partial �uxes

HS =
QS

T
; H� =

Q�

T
: (63)

As we have already mentioned the exploitation of the condition (61) is based on the

elimination of constraints imposed on the inequality by �eld equations. This can

be done either by direct substitution or by means of auxiliary functions � Lagrange

multipliers. We have demonstrated these pocedures on the example of the rigid heat

conductor. In the present case we use the method of Lagrange multipliers besides the

relation between the heat �ux and the entropy �ux which follows from the Fourier

relations and the explicit relations for bulk �uxes. These will be substituted during

the evaluation of the second law. Bearing the balance equations and constitutive

relations in mind we write the entropy inequality in the following form

@ (��)

@t
+ Div

�
�� _X+H

�
� ��

S

E�
S

�
AX

�=1

��
�

E�
�

�

��v
S

� Ev
S

�
AX

�=1

�v
�

� Ev
�

� �"

 
E"

S

+
AX

�=1

E"
�

!
��nEn ��F � EF � 0; (64)

where the Lagrange multipliers ��
S

;��
�

;�v
S

;�v
�

;�"
;�n

;�F are functions of con-

stitutive variables (57) (e.g. [2], [19]). The above inequality should hold not only

for solutions of �eld equations but for all �elds.
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The evaluation of the above condition is tedious but straightforward. We have to

apply the chain rule of di�erentiation and select linear contributions to the inequal-

ity. The requirement that this linear part is zero yields relations for multipliers and

a set of thermodynamic identities restricting constitutive relations. There remains a

residual, nonlinear inequality which de�nes the dissipation in the system. We quote

here solely some results for a two�component system without presenting detailed

derivations. These can be found in my earlier papers.

We proceed to present some results for isothermal processes in two-component sys-

tems: � = F , where F denotes a single �uid component. It is convenient to introduce

the speci�c partial Helmholtz free energies de�ned by the relations

 
S := "

S � T�
S
;  

F := "
F � T�

F
: (65)

Evaluation of the second law of thermodynamics has been made under the simplify-

ing assumption that the constitutive dependence on two vectorial constitutive vari-

ables �XF
;N is linear. This can be divided into two assumptions: partial Helmholtz

free energies are independent of both variables, and in particular

@ 
S

@ �XF
=
@ 

F

@ �XF
= 0; (66)

and the constitutive dependence of the momentum source on the relative velocity
�XF as well as on the gradient of porosity N is linear, i.e.

p̂ := p̂S � p̂F = �FS �XF �NN: (67)

Under these conditions thermodynamic identities imply the following relations.

� Partial stress tensors possess potentials - the partial Helmholtz free energies

PS = �
S
@ 

S

@FS
; PF = �

 
�
F2@ 

F

@�F
+ nN

!
FS�T

; (68)

i.e. the stress tensor in the �uid component reduces to its spherical part � a

partial pressure;

� Partial Helmholtz free energies depend on the following constitutive variables

 
S =  

S

�
I; II; III; �

F

�
;  

F =  
F

�
III; �

F

�
; (69)

and, in addition,

2III
@ 

F

@III
+ �

F
@ 

F

@�F
= �

N

�
FR

0

; (70)

where �FR0 is a constant (the initial true mass density of the �uid).
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As we see, both partial free energies are dependent on the third invariant of de-

formation of the skeleton, III, and on the partial mass density of the �uid, �F .

This means that the partial stress tensors contain a mechanical coupling between

components � volume changes of one of them yield changes of stresses in the other

component. In order to obtain this result the set of constitutive variables must

include the gradient of porosity (N 6=0). Otherwise processes in components would

be solely coupled through the source of momentum describing an in�uence of the

di�usion. Let us mention that an analogous property has been discovered by I.

Müller for mixtures of �uids (e.g. [7]). He has proven in 70'ies that mixtures of

ideal �uids in which constitutive relations do not contain a dependence on gradients

of partial mass densities (or, equivalently, concentrations) yield the discoupling of

partial pressures. Such mixtures are called simple.

This type of coupling is characteristic for the so-called linear Biot model of porous

materials. We present some of its features in the next section.

There remains the residual inequality in the form

�

�
FST �XF

�
�
�
FST �XF

�
� 0: (71)

Hence the only source of dissipation in these materials is the di�usion with the

di�usion velocity FST �XF = �xF � �xS.

We complete this section with linearized equations for two-component isotropic

poroelastic materials in isothermal conditions. These equations serve the purpose

to describe acoustic waves in porous materials which, in turn, form the basis for

nondestructive testing of soils and rocks. In such a case the Lagrangian description is

identical with the Eulerian description and we can use �elds transformed according

to relations (42). The assumption on linearity means that we consider processes

satisfying the following restrictions

max
n����(�)���o

�=1;2;3
� 1; j�j � 1; � := �

�
F

t
� �

F

0

�
F

0

; (72)

where �(�) are eigenvalues of the Almansi-Hamel deformation tensor of the skeleton

det
�
eS � �1

�
= 0; eS :=

1

2

�
1� FST�1FS�1

�
; (73)

and �F0 ; � denote a constant initial partial mass density of the �uid, and small macro-

scopic volume changes of the �uid, respectively.

Under these assumptions the constitutive relations for partial Cauchy stresses follow

from the general relations (68) in the following form

TS = TS

0 + �
S
e1+ 2�SeS + � (n� nE) 1+n0N �1;

TS := (III)�
1

2PSFST
; e := tr eS;

TF = �pF0 1+
�
�
F

0 �� + n0N e

�
1+� (n� nE) 1; (74)

TF := (III)�
1

2PFFST
;
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where the material parameters �S; �S; �; �;N depend solely on the initial constant

porosity n0. T
S

0 ; p
F

0 are an initial partial stress in the skeleton, and an initial partial

pressure in the �uid, respectively. The equilibrium value of the porosity nE is given

by the relation

nE = n0 (1 + e� �) ; (75)

which follows from the evaluation of the porosity equation in the thermodynamic

equilibrium: vF = vS; n̂ = 0. It is clear that changes of porosity described by the

di�erence nE � n0 correspond to undrained conditions and there is no spontaneous

relaxation of porosity in the thermodynamic equilibrium.

The momentum balance equations have in this case the following form

�
S

0

@vS

@t
= divTS + �

�
vF � vS

�
�N gradnE + �

S

0b
S
; (76)

�
F

0

@vF

@t
= divTF � �

�
vF � vS

�
+N gradnE + �

F

0 b
F
;

where �S0 is the initial partial mass density of the skeleton, and �
S

0b
S
; �

F

0 b
F are

partial external body forces.

Simultaneously an in�uence of the di�erence n � nE on in the analysis of acoustic

waves can be approximately neglected due to the smallness of parameter �. Substi-

tution of relations (74) and (75) in the above set yields

�
S

0

@vS

@t
= div

�
TS

0 +Ke1+ 2�Sdev eS +Q�1
�
+ �

�
vF � vS

�
+ �

S

0b
S
; (77)

�
F

0

@vF

@t
= � grad

�
p
F

0 +R�+Qe

�
divTF � �

�
vF � vS

�
+ �

F

0 b
F
;

where

K := �
S +

2

3
�
S � n0N ; Q := 2n0N ; R := �

F

0 �� n0N ; (78)

dev eS := eS �
1

3
tr eS1:

In the next section we discuss some aspects of the identi�cation of the material

parameters appearing in this set of equations.

5 Micro-macro-transitions for linear poroelastic ma-

terials

One of the main problems in applications of the linear poroelastic model is the

dependence of material parameters K;�S; R;Q on the porosity n0. In order to

�nd this dependence one has to relate macroscopic and microscopic descriptions of

processes. We should stress that the meaning of the microscopic description for

geotechnical materials is di�erent from this used, for instance, in materials science.
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The characteristic length of geotechnical microstructure is almost macroscopic (say

� 1mm) and, therefore, we can describe microstructural processes by continuum

theories as we do in the case of macroscopic description. The di�erence is solely

related to very complicated domains in the microscopic description which make

impossible a solution of real boundary value problems and require a construction of

some averages.

In the case of the shear modulus �S for granular materials the problem cannot be

solved on the basis of linear considerations. Properties of this modulus depend on

interactions between grains and these in turn must be at least dependent on the

pressure con�ning the system. Consequently this macroscopic parameter cannot be

constant � it must be dependent on one of the macroscopic �elds. Hence the model

cannot be linear. There are some attempts to solve this problem by means of a

kinetic theory of granular materials (e.g. [20]) but these are still rather far from

engineering applications.

The situation is di�erent in the case of the compressibility moduli. Some relations

have been proposed already at the beginning of 20th century (e.g. [21]) and the

results obtained by Gassmann 1951 [22] are used until today. We present here

only the main features of this approach in order to point out the role of rational

thermodynamics in this problem.

We consider a chosen point of the two-component continuum and assume that

macroscopic constitutive properties of this medium are described by volume aver-

ages calculated over the so-called Representative Elementary Volume (REV) of the

microstructure. This means that a real material behaviour is replaced by a certain

amount of smoothed out data. In the case of mechanical properties related to the

compressibility we assume that states of the system in REV are homogeneous and

all processes are quasistatic. In addition we de�ne the elementary representative

volume as material with respect to the solid component.

Figure 2: Scheme of the jacketed test

On the macroscopic level the constitutive relations are given by (74). In the case of

purely volumetric changes we can write them in the following form

p
S = p

S

0 �Ke+Q
�
F

t
� �

F

0

�
F

0

; p
F = p

F

0 +R
�
F

t
� �

F

0

�
F

0

�Qe; (79)
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p
S := �

1

3
trTS

; p
F := �

1

3
trTF

;

where the notation (78) has been used. In these relations pS0 ; p
F

0 denote the reference

partial pressures in the skeleton and in the �uid, respectively. We are using here

again the mass densities of the �uid component �F
t
; �

F

0 rather than volume changes

� because the partial mass density or the partial speci�c volume (compare section 3)

are proper local constitutive variables for the �uid, and the volume change � may be

not for homogeneous processes. This appears, for instance, in simple tests considered

in this section when the total mass of the �uid is not preserved (drainage!). In the

local description this problem would not appear because the local mass conservation

does hold. However it requires a local velocity of �uid to be di�erent from zero

which cannot be properly incorporated in global homogeneous models. The problem

does not appear for the skeleton because the mass of skeleton is conserved also in

homogeneous tests.

Let MS denote the instantaneous mass of the solid component in REV, and M
F

� the instantaneous mass of the �uid in REV. We assume that the constitutive

relations on the microscopic level are of the form

p
SR = p

SR

0 �Ks

�
SR

0 � �
SR

t

�
SR

0

; p
FR = p

FR

0 �Kf

�
FR

0 � �
FR

t

�
FR

0

; (80)

where �SR
t

=
M

S

V S
is the true mass density of the skeleton (comp. section 3), �FR

t
=

M
F

V F
denotes the true mass density of the �uid; Ks is the so-called bulk modulus of

the solid material composing the porous frame (compressibility modulus of grains),

and Kf is the bulk (real) modulus of the �uid. The index zero refers to the initial

state.

We want to �nd the relation between the macroscopic parameters K;R;Q, the

microscopic parameters Ks; Kf , and the porosity n0. To this aim Biot and Willis [5]

designed two simple tests: the unjacketed test whose some elements we have already

discussed earlier in this work, and the jacketed drained test shown schematically in

Fig.2 (open tap). The third possibility appears for the jacketed undrained test

(closed tap).

In all possible tests of this sort we have to satisfy the following relations

1. macro- and micro- constitutive relations given by (79), (80), respectively,

2. geometrical compatibility relations which follow from the assumption that

REV is material with respect to the solid component,

3. dynamical compatibility relations between micro- and macro-pressures

p
S = (1� n0) p

SR
; p

F = n0p
FR
; (81)
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which result from the assumption on randomness of microstructure (i.e. that

the volume fraction of voids � porosity n0 is identical with the fraction of the

area of surface of voids to the total area in an arbitrary cross-section of REV),

4. equilibrium condition with an external excess pressure p0 loading the system

p
0 =

�
p
S � p

S

0

�
+
�
p
F � p

F

0

�
; (82)

5. relations de�ning the tests.

We proceed to derive the geometrical compatibility relations. If we denote the

volume of REV by V then in any homogeneous quasistatic process the mass MS =

�
S

t
V must be conserved

d�
S

t
V

dt
= 0 =)

�
S

t

�
S

0

=
V0

V
=

1

1 + e
; (83)

where V0 is the initial volume of REV. The formula means that we assume for the

whole volume of REV the macroscopic rule of volume changes.

Simultaneously on the microscopic level we have �SR
t

=
M

S

V S
and due to the de�nition

of porosity (volume fraction of voids) 1� n =
V
S

V
we obtain

�
S

t
= (1� n) �SR

t
=)

1� n

1� n0

�
SR

t

�
SR

0

=
1

1 + e
: (84)

On the other hand the mass conservation can be written in its microscopic form

d�
SR

t
V
S

dt
= 0

�
SR

t

�
SR

0

=
V
S

0

V S
=

1

1 + eR
: (85)

The combination of the results (84) and (85) yields the �rst geometrical compatibility

relation
1� n

1� n0
=

1 + e
R

1 + e
: (86)

This relation shows the di�erence between the notion of volume changes in the

macroscopic model of porous materials and real volume changes of grains. Even

if the material of grains is assumed to be approximately incompressible (eR � 0)

the macroscopic changes of volume of the skeleton e are di�erent from zero due to

changes of porosity.

The second relation follows from the transformation of �uid volume (voids)

V
F = V

F

0

�
1 + �

R

�
=)

n

n0

=
1 + �

R

1 + e
: (87)

This is the second geometrical compatibility relation.
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Easy manipulations on those two compatibility relations yield the following relation

between the macroscopic change of the volume and microscopic changes of volumes

of both components.

e = (1� n0) e
R + n0�

R
: (88)

It remains to de�ne the tests. It is easy to see that the following conditions must

hold:

1. Undrained jacketed test: the mass of �uid is conserved, i.e.

d�
F

t
V

dt
= 0 =) �

F

t
=

�
F

0

1 + e
=)

n

n0

�
FR

t

�
FR

0

=
1

1 + e
;

and
d�

FR

t
V
F

dt
= 0 =)

�
FR

t

�
FR

0

=
1

1 + �R
:

Combination of these two relations shows that we obtain again the relation

(87). This means that this test does not give any additional information about

micro-macrorelations.

2. Drained jacketed test: in this case the increment of the pore pressure in the

�uid must be zero if the continuity of the pressure is preserved in the tap

p
FR � p

FR

0 = 0: (89)

This seems to be a safe assumption for quasistatic processes because, in con-

trast to the unjacketed test discussed at the beginning of this work, there are

no surface e�ects possible.This test is usually used in practice to de�ne the

so-called drained compressibility modulus of the skeleton Kd.

3. Unjacketed test: as we have shown in section 3 we can assume in this case

that the pore pressure is in equilibrium with the excess external pressure

p
FR � p

FR

0 = p
0

: (90)

The above relations can be combined to give the desired relation between microscopic

and macroscopic compressibilities.

This is not what is done in the literature on the subject. In those considerations the

undrained jacketed test is fully ignored, the drained jacketed test is used, as already

mentioned, to de�ne the drained compressibility modulus Kd and the unjacketed

test is considered under the assumption that the porosity remains constant (e.g.

[6]). Then we obtain after easy calculations (e.g. see [23, 24])

K = Kd +
�
2

�� n0

Ks

+
n0

Kf

; R =
n0

�� n0

Ks

+
n0

Kf

; (91)

Q =
n0�

�� n0

Ks

+
n0

Kf

; � := 1�
Kd

Ks

:
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These are the so-called Gassmann relations. � is called the Biot-Willis parameter.

It seems to be a wonder that with all these assumptions the above relations give

good results in practical applications, for instance � in the wave analysis. It is clear

that the validity of the above relations is limited in many ways. The assumption

on the constant porosity seems to be at least doubtful, the validity of the relation

between pressures on the interface in the unjacketed experiment is limited to very

simple systems, as discussed in Sect.3. If any of the e�ects listed in this section

should be incorporated then we have to rely on the continuity of the free enthalpy

rather than on the continuity of pressure. This should be, for instance, the case

for viscous �uids even though the problem is ignored in the literature (compare the

analysis of acoustic waves in porous materials in [6]).

Practical application in nondestructive testing follows now from measurements of

speeds of propagation of bulk or surface waves in soils or rocks. These experimental

data predict macroscopic elastic parameters combined with mass densities. Combi-

nation of those data with Gassmann relations (91) yields the relation for porosity.

This procedure has been investigated in a recent paper of Foti, Lai and Lancellotta

[25]. Results compare well with experimental �ndings.

6 Concluding remarks

Results presented in this article are typical for macroscopic thermodynamic modeling

of continuous media. Consequently we can state that the results of evaluation of the

second law of thermodynamics possess two features

� they reduce the extent of requirements concerning the construction of constitu-

tive laws and frequently � this is the case for a rather broad class of poroelastic

materials discussed in section 3 � they yield the existence of thermodynamic

potentials. The latter not only simplify the construction of constitutive laws

but enable an analysis of existence and stability of solutions which we did not

discuss in this work;

� they clarify limitations of ad hoc models appearing in practical applications.

The example of the Gassmann relations discussed in the paper shows that

an extention of these relations on, for instance, viscous �uids may not be as

straightforward as sometimes done in works on the subject.

Simultaneously the thermodynamic method and, in particular, the second law of

thermodynamics do not give speci�c results which could replace experiments. In

some cases of material properties such as the heat conductivity or permeability

of porous media we obtain solely inequalities restricting the models but not even

hints how to evaluate the material parameters without solving �eld equations and

verifying solutions by experiments.
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