30 research outputs found

    Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities

    Get PDF
    We present results from an investigation of Cassini encounters with Saturn’s magnetotail current sheet, using magnetic field and plasma data. In the first of two intervals shown, small periodic changes in the north-south component of the magnetic field are matched by periodic density enhancements associated with the plasma sheet center. In the second interval, a large plasmoid signature is observed set against a background of small-scale current sheet motions. We interpret the quasi-periodic small field deflections and density enhancements as large-scale wave-like motion of the current sheet. We stress that plasmoid signatures are of a clearly different character and occur much less frequently

    Future Missions to the Giant Planets that Can Advance Atmospheric Science Objectives:Space Science Reviews

    Get PDF
    Other papers in this special issue have discussed the diversity of planetary atmospheres and some of the key science questions for giant planet atmospheres to be addressed in the future. There are crucial measurements that can only be made by orbiters of giant planets and probes dropped into their atmospheres. To help the community be more effective developers of missions and users of data products, we summarize how NASA and ESA categorize their planetary space missions, and the restrictions and requirements placed on each category. We then discuss the atmospheric goals to be addressed by currently approved giant-planet missions as well as missions likely to be considered in the next few years, such as a joint NASA/ESA Ice Giant orbiter with atmospheric probe. Our focus is on interplanetary spacecraft, but we acknowledge the crucial role to be played by ground-based and near-Earth telescopes, as well as theoretical and laboratory work. © 2020, Springer Nature B.V

    The Role of Intense Upper Hybrid Resonance Emissions in the Generation of Saturn Narrowband Emission

    Get PDF
    Twenty high-inclination ring-grazing orbits occurred in the final period of the Cassini mission. These orbits intercepted a region of intense Z-mode and narrowband (NB) emission (Ye et al., 2010, ) along with isolated, intense upper hybrid resonance (UHR) emissions that are often associated with NB source regions. We have singled out such UHR emission seen on earlier Cassini orbits that also lie near the region crossed by the ring-grazing orbits. These previous orbits are important because Cassini electron phase-space distributions are available and dispersion analysis can be performed to better understand the free energy source and instability of the UHR emission. We present an example of UHR emission on a previous orbit that is similar to that observed during the ring-grazing orbits. Analysis of the observed plasma distribution of the previous orbit leads us to conclude that episodes of UHR emission and NB radiation observed during the ring-grazing orbits are likely due to plasma distributions containing loss cones, temperature anisotropies, and strong density gradients near the ring plane. Z-mode emissions associated with UHR and NB emission can be in Landau resonance with electrons to produce scattering or acceleration (Woodfield et al., 2018, https://doi.org/10.1038/s41467-018-07549-4)

    Ice giant magnetospheres

    Get PDF
    The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind-magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'

    Cassini observations of ionospheric plasma in Saturn's magnetotail lobes

    No full text
    Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ? 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 109 and (1.43 ± 0.21) × 1010 cm?2 s?1, 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×102 and 1.1 ×103 kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found during this event. It is not clear how much of this mass is trapped within the magnetosphere and how much is lost to the solar wind

    Ice giant system exploration in the 2020s:an introduction

    Get PDF
    The international planetary science community met in London in January 2020, united in the goal of realizing the first dedicated robotic mission to the distant ice giants, Uranus and Neptune, as the only major class of solar system planet yet to be comprehensively explored. Ice-giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests to our understanding of exotic water-rich planetary interiors, dynamic and frigid atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue on ice giant system exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'

    Roadmap for Solar System Research July 2015

    Get PDF

    Solar cycle effects on the dynamics of Jupiter's and Saturn's magnetospheres

    No full text
    The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter's and Saturn's magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.</p

    A multi-instrument view of tail reconnection at Saturn

    No full text
    Three instances of tail reconnection events at Saturn involving the ejection of plasmoids downtail have been reported by Jackman et al. (2007) using data from Cassini’s magnetometer (MAG). Here we show two newly discovered events, as identified in the MAG data by northward/southward turnings and intensifications of the field. We discuss these events along with the original three, with the added benefit of plasma and energetic particle data. The northward/southward turnings of the field elucidate the position of the spacecraft relative to the reconnection point and passing plasmoids, while the variability of the azimuthal and radial field components during these events indicates corresponding changes in the angular momentum of the magnetotail plasma following reconnection. Other observable effects include a reversal in flow direction of energetic particles, and the apparent evacuation of the plasma sheet following the passage of plasmoids

    Modelling magnetic fields and plasma flows in the magnetosphere of Jupiter

    No full text
    The magnetic fields of the giant planets, Jupiter and Saturn, deviate significantly from a pure magnetic dipole and the cold plasma is mostly centrifugally confined near the equator. The additional contribution of the azimuthal currents leads to the stretching of the magnetic field and the formation of a characteristic, disc-type structure known as a magnetodisc. We present here an updated version of a numerical implementation of Caudal's iterative scheme, used to create models of the magnetosphere. In particular, we include newer equatorial density, temperature and hot plasma profiles obtained from Galileo data. Finally, we describe and use an algorithm to update the angular velocity profile after the end of the iterative process, using information from the magnetodisc. We also present comparisons between the azimuthal current and plasma flow predicted by our model and those derived from spacecraft observations
    corecore