421 research outputs found

    Maser-beam instability of Bernstein waves

    Get PDF
    The present study constitutes a continuation and improvement of the preceding work by Yoon et al. [J. Geophys. Res. 104, 19801 (1999)]. In the present discussion, an instability of Bernstein waves excited by a beam of energetic electrons is investigated. Special attention is paid to the regime where the ratio of plasma frequency, vpe , to electron gyrofrequency, Ve , is sufficiently higher than unity. An approximate but fairly accurate scheme is introduced to deal with the situation dictated by the condition, vpe 2 /Ve 2e1. The present investigation is motivated by the research in solar radiophysics. However, in this article the emphasis is placed on basic properties of the instability rather than its application

    Selective-Area Growth of Heavily \u3cem\u3en\u3c/em\u3e–Doped GaAs Nanostubs on Si(001) by Molecular Beam Epitaxy

    Get PDF
    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth(SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growthparameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAsgrowth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grownGaAs nanostubs by fabricating heterogeneous p+–Si/n+–GaAs p–n diodes

    The Role of Intense Upper Hybrid Resonance Emissions in the Generation of Saturn Narrowband Emission

    Get PDF
    Twenty high-inclination ring-grazing orbits occurred in the final period of the Cassini mission. These orbits intercepted a region of intense Z-mode and narrowband (NB) emission (Ye et al., 2010, ) along with isolated, intense upper hybrid resonance (UHR) emissions that are often associated with NB source regions. We have singled out such UHR emission seen on earlier Cassini orbits that also lie near the region crossed by the ring-grazing orbits. These previous orbits are important because Cassini electron phase-space distributions are available and dispersion analysis can be performed to better understand the free energy source and instability of the UHR emission. We present an example of UHR emission on a previous orbit that is similar to that observed during the ring-grazing orbits. Analysis of the observed plasma distribution of the previous orbit leads us to conclude that episodes of UHR emission and NB radiation observed during the ring-grazing orbits are likely due to plasma distributions containing loss cones, temperature anisotropies, and strong density gradients near the ring plane. Z-mode emissions associated with UHR and NB emission can be in Landau resonance with electrons to produce scattering or acceleration (Woodfield et al., 2018, https://doi.org/10.1038/s41467-018-07549-4)

    Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism

    Full text link
    The oscillation of tunnel splitting in the biaxial spin system within magnetic field along the anisotropy axis is analyzed within the particle mapping approach, rather than in the (\theta-\phi) spin coherent-state representation. In our mapping procedure, the spin system is transformed into a particle moving in the restricted S1S^1 geometry whose wave function subjects to the boundary condition involving additional phase shift. We obtain the new topological phase that plays the same role as the Wess-Zumino action in spin coherent-state representation. Considering the interference of two possible trajectories, instanton and anti-instanton, we get the identical condition for the field at which tunneling is quenched, with the previous result within spin coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte

    Simultaneous measurements of aerosol size distributions at three sites in the European high Arctic

    Get PDF
    19 pages, 9 figures, 1 tableAerosols are an integral part of the Arctic climate system due to their direct interaction with radiation and indirect interaction through cloud formation. Understanding aerosol size distributions and their dynamics is crucial for the ability to predict these climate relevant effects. When of favourable size and composition, both long-rangetransported-and locally formed particles-may serve as cloud condensation nuclei (CCN). Small changes of composition or size may have a large impact on the low CCN concentrations currently characteristic of the Arctic environment. We present a cluster analysis of particle size distributions (PSDs; size range 8-500 nm) simultaneously collected from three high Arctic sites during a 3-year period (2013-2015). Two sites are located in the Svalbard archipelago: Zeppelin research station (ZEP; 474 m above ground) and the nearby Gruvebadet Observatory (GRU; about 2 km distance from Zeppelin, 67 m above ground). The third site (Villum Research Station at Station Nord, VRS; 30 m above ground) is 600 km west-northwest of Zeppelin, at the tip of northeastern Greenland. The GRU site is included in an inter-site comparison for the first time. K-means cluster analysis provided eight specific aerosol categories, further combined into broad PSD classes with similar characteristics, namely pristine low concentrations (12 %-14 % occurrence), new particle formation (16 %-32 %), Aitken (21 %-35 %) and accumulation (20 %-50 %). Confined for longer time periods by consolidated pack sea ice regions, the Greenland site GRU shows PSDs with lower ultrafine-mode aerosol concentrations during summer but higher accumulation-mode aerosol concentrations during winter, relative to the Svalbard sites. By association with chemical composition and cloud condensation nuclei properties, further conclusions can be derived. Three distinct types of accumulation-mode aerosol are observed during winter months. These are associated with sea spray (largest detectable sizes, > 400 nm), Arctic haze (main mode at 150 nm) and aged accumulation-mode (main mode at 220 nm) aerosols. In contrast, locally produced particles, most likely of marine biogenic origin, exhibit size distributions dominated by the nucleation and Aitken mode during summer months. The obtained data and analysis point towards future studies, including apportioning the relative contribution of primary and secondary aerosol formation pro cesses and elucidating anthropogenic aerosol dynamics and transport and removal processes across the Greenland Sea. In order to address important research questions in the Arctic on scales beyond a singular station or measurement events, it is imperative to continue strengthening international scientific cooperationThis research has been supported by the Spanish Ministry of Economy through project BIO-NUC (CGL2013-49020-R), PI-ICE (CTM2017-89117-R) and the Ramon y Cajal fellowship (RYC-2012-11922). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654109, the Danish Council for Independent Research (project NUMEN, DFF-FTP-4005-00485B) and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. The work at Villum Research Station, Station Nord, was financially supported by the Danish Environmental Protection Agency via the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The Villum Foundation funded the construction of Villum Research Station, Station Nord. CCN measurements are supported by a KOPRI program (PN19081), funded by a National Research Foundation of Korea grant (NRF-2016M1A5A1901769). The authors acknowledge financial support (to David C. S. Beddows) from the Natural Environment Research Council's funding of the National Centre for Atmospheric Science (NCAS) (grant number R8/H12/83/011)Peer Reviewe

    Extracting the CKM phase angle \gamma(\equiv \phi_3) from isospin analysis in B\to K \pi decays

    Full text link
    We propose a new method to extract the CKM phase angle \gamma (\equiv \phi_3) from the isospin analysis in B \to K \pi decays. Unlike previously proposed methods, we do not employ flavor SU(3) symmetry, so that this method is free from the hadronic uncertainty coming from the SU(3) breaking effect. Neither we adopt any Dalitz-plot analysis, which may involve multiple strong phases and large final state interactions. After including small CP violating terms in B^+ \to K^0 \pi^+ and color-suppressed electroweak penguin contribution in B^0 \to K^+ \pi^-, whose values are estimated from the QCD factorization, we obtain \gamma = ({70}^{+5 +1 +2}_{-14 -1 -3})^\circ \textrm{or} {106^\circ}< \gamma < {180^\circ}. The first error is due to the experimental errors mainly caused by mixing-induced CP asymmetry S_{{K_s} \pi^0}. The second and third errors come from the theoretical uncertainty for two above-mentioned small contributions, respectively. Since we utilize only the isospin relations in B \to K \pi decays, this method will work well, regardless of possible new physics effects unless the isospin relations do not hold.Comment: Error analysis has been improve
    • …
    corecore