29 research outputs found
Two-component Bose gas in an optical lattice at single-particle filling
The Bose-Hubbard model of a two-fold degenerate Bose gas is studied in an
optical lattice with one particle per site and virtual tunneling to empty and
doubly-occupied sites. An effective Hamiltonian for this system is derived
within a continued-fraction approach. The ground state of the effective model
is studied in mean-field approximation for a modulated optical lattice. A
dimerized mean-field state gives a Mott insulator whereas the lattice without
modulations develops long-range correlated phase fluctuations due to a
Goldstone mode. This result is discussed in comparison with the superfluid and
the Mott-insulating state of a single-component hard-core Bose.Comment: 11 page
Decoupling Dark Energy from Matter
We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe
Dynamics of Fermionic Four-Wave Mixing
We study the dynamics of a beam of fermions diffracted off a density grating
formed by fermionic atoms in the limit of a large grating. An exact description
of the system in terms of particle-hole operators is developed. We use a
combination of analytical and numerical methods to quantitatively explore the
Raman-Nath and the Bragg regimes of diffraction. We discuss the limits in
diffraction efficiency resulting from the dephasing of the grating due the
distribution of energy states occupied by the fermions. We propose several
methods to overcome these limits, including the novel technique of ``atom
echoes''.Comment: 8 pages, 7 figure
Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?
We test a cosmological model which the only component is a pressureless fluid
with a constant bulk viscosity as an explanation for the present accelerated
expansion of the universe. We classify all the possible scenarios for the
universe predicted by the model according to their past, present and future
evolution and we test its viability performing a Bayesian statistical analysis
using the SCP ``Union'' data set (307 SNe Ia), imposing the second law of
thermodynamics on the dimensionless constant bulk viscous coefficient \zeta and
comparing the predicted age of the universe by the model with the constraints
coming from the oldest globular clusters.
The best estimated values found for \zeta and the Hubble constant Ho are:
\zeta=1.922 \pm 0.089 and Ho=69.62 \pm 0.59 km/s/Mpc with a \chi^2=314. The age
of the universe is found to be 14.95 \pm 0.42 Gyr. We see that the estimated
value of Ho as well as of \chi^2 are very similar to those obtained from LCDM
model using the same SNe Ia data set. The estimated age of the universe is in
agreement with the constraints coming from the oldest globular clusters.
Moreover, the estimated value of \zeta is positive in agreement with the second
law of thermodynamics (SLT).
On the other hand, we perform different forms of marginalization over the
parameter Ho in order to study the sensibility of the results to the way how Ho
is marginalized. We found that it is almost negligible the dependence between
the best estimated values of the free parameters of this model and the way how
Ho is marginalized in the present work. Therefore, this simple model might be a
viable candidate to explain the present acceleration in the expansion of the
universe.Comment: 31 pages, 12 figures and 2 tables. Accepted to be published in the
Journal of Cosmology and Astroparticle Physics. Analysis using the new SCP
"Union" SNe Ia dataset instead of the Gold 2006 and ESSENCE datasets and
without changes in the conclusions. Added references. Related works:
arXiv:0801.1686 and arXiv:0810.030
Oxidised cosmic acceleration
We give detailed proofs of several new no-go theorems for constructing flat
four-dimensional accelerating universes from warped dimensional reduction.
These new theorems improve upon previous ones by weakening the energy
conditions, by including time-dependent compactifications, and by treating
accelerated expansion that is not precisely de Sitter. We show that de Sitter
expansion violates the higher-dimensional null energy condition (NEC) if the
compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R
vanishes everywhere, or if R and the warp function satisfy a simple limit
condition. If expansion is not de Sitter, we establish threshold
equation-of-state parameters w below which accelerated expansion must be
transient. Below the threshold w there are bounds on the number of e-foldings
of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the
bound implies the NEC is violated. If R does not vanish everywhere on M,
exceeding the bound implies the strong energy condition (SEC) is violated.
Observationally, the w thresholds indicate that experiments with finite
resolution in w can cleanly discriminate between different models which satisfy
or violate the relevant energy conditions.Comment: v2: corrections, references adde
Laser-induced collective excitations in a two-component Fermi gas
We consider the linear density response of a two-component (superfluid) Fermi
gas of atoms when the perturbation is caused by laser light. We show that
various types of laser excitation schemes can be transformed into linear
density perturbations, however, a Bragg spectroscopy scheme is needed for
transferring energy and momentum into a collective mode. This makes other types
of laser probing schemes insensitive for collective excitations and therefore
well suited for the detection of the superfluid order parameter. We show that
for the special case when laser light is coupled between the two components of
the Fermi gas, density response is always absent in a homogeneous system.Comment: 6 pages, no figure
Collective excitations in trapped boson-fermion mixtures: from demixing to collapse
We calculate the spectrum of low-lying collective excitations in a gaseous
cloud formed by a Bose-Einstein condensate and a spin-polarized Fermi gas over
a range of the boson-fermion coupling strength extending from strongly
repulsive to strongly attractive. Increasing boson-fermion repulsions drive the
system towards spatial separation of its components (``demixing''), whereas
boson-fermion attractions drive it towards implosion (``collapse''). The
dynamics of the system is treated in the experimentally relevant collisionless
regime by means of a Random-Phase approximation and the behavior of a
mesoscopic cloud under isotropic harmonic confinement is contrasted with that
of a macroscopic mixture at given average particle densities. In the latter
case the locations of both the demixing and the collapse phase transitions are
sharply defined by the same stability condition, which is determined by the
softening of an eigenmode of either fermionic or bosonic origin. In contrast,
the transitions to either demixing or collapse in a mesoscopic cloud at fixed
confinement and particle numbers are spread out over a range of boson-fermion
coupling strength, and some initial decrease of the frequencies of a set of
collective modes is followed by hardening as evidenced by blue shifts of most
eigenmodes. The spectral hardening can serve as a signal of the impending
transition and is most evident when the number of bosons in the cloud is
relatively large. We propose physical interpretations for these dynamical
behaviors with the help of suitably defined partial compressibilities for the
gaseous cloud under confinement.Comment: 16 pages, 7 figures, revtex
Casimir Energies for 6D Supergravities Compactified on T_2/Z_N with Wilson Lines
We compute (as functions of the shape and Wilson-line moduli) the one-loop
Casimir energy induced by higher-dimensional supergravities compactified from
6D to 4D on 2-tori, and on some of their Z_N orbifolds. Detailed calculations
are given for a 6D scalar field having an arbitrary 6D mass m, and we show how
to extend these results to higher-spin fields for supersymmetric 6D theories.
Particular attention is paid to regularization issues and to the identification
of the divergences of the potential, as well as the dependence of the result on
m, including limits for which m^2 A> 1 where A is the volume of
the internal 2 dimensions. Our calculation extends those in the literature to
very general boundary conditions for fields about the various cycles of these
geometries. The results have potential applications towards Supersymmetric
Large Extra Dimensions (SLED) as a theory of the Dark Energy. First, they
provide an explicit calculation within which to follow the dependence of the
result on the mass of the bulk states which travel within the loop, and for
heavy masses these results bear out the more general analysis of the
UV-sensitivity obtained using heat-kernel methods. Second, because the
potentials we find describe the dynamics of the classical flat directions of
these compactifications, within SLED they would describe the present-day
dynamics of the Dark Energy.Comment: 40 pages, 7 figure
Theory of output coupling for trapped fermionic atoms
We develop a dynamic theory of output coupling, for fermionic atoms initially
confined in a magnetic trap. We consider an exactly soluble one-dimensional
model, with a spatially localized delta-type coupling between the atoms in the
trap and a continuum of free-particle external modes. Two important special
cases are considered for the confinement potential: the infinite box and the
harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that
the trap population does not vanish in the infinite-time limit. For weak
coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding
to the initially occupied energy levels in the trap; the height of these peaks
increases with the energy. As the coupling gets stronger, the energy spectrum
is displaced towards dressed energies of the fermions in the trap. The
corresponding dressed states result from the coupling between the unperturbed
fermionic states in the trap, mediated by the coupling between these states and
the continuum. In the strong-coupling limit, there is a reinforcement of the
lowest-energy dressed mode, which contributes to the energy spectrum of the
outgoing beam more strongly than the other modes. This effect is especially
pronounced for the one-dimensional box, which indicates that the efficiency of
the mode-reinforcement mechanism depends on the steepness of the confinement
potential. In this case, a quasi-monochromatic anti-bunched atomic beam is
obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral
distribution and corresponding figur
Pairing in two-dimensional boson-fermion mixtures
The possibilities of pairing in two-dimensional boson-fermion mixtures are
carefully analyzed. It is shown that the boson-induced attraction between two
identical fermions dominates the p-wave pairing at low density. For a given
fermion density, the pairing gap becomes maximal at a certain optimal boson
concentration. The conditions for observing pairing in current experiments are
discussedComment: 10 pages, 5 figs, revtex
