1,894 research outputs found
Four Blue Beads from Gardom's Edge
Four blue glass beads from the prehistoric site of Gardom’s Edge, in the upland area of the Peak District in Britain, were analyzed to determine their composition, date, and origin. The simple annular beads were of unknown date, although they were recovered from contexts that were either Bronze Age or Iron Age in date. The compositions of the beads are relatively unusual. They were manufactured with mineral alkalis, but they contained extremely low concentrations of impurities and were colored with copper. Comparison with other recently analyzed glasses shows (rare) parallels in Europe of Iron Age date, but not in the eastern Mediterranean (Egypt, Near East), which suggests an origin somewhere in the west. This is an extraordinary find in a marginal area, which suggests far-reaching trade and exchange networks
Uniqueness of Ground States for Short-Range Spin Glasses in the Half-Plane
We consider the Edwards-Anderson Ising spin glass model on the half-plane with zero external field and a wide range of choices, including
mean zero Gaussian, for the common distribution of the collection J of i.i.d.
nearest neighbor couplings. The infinite-volume joint distribution
of couplings J and ground state pairs with periodic
(respectively, free) boundary conditions in the horizontal (respectively,
vertical) coordinate is shown to exist without need for subsequence limits. Our
main result is that for almost every J, the conditional distribution
is supported on a single ground state pair.Comment: 20 pages, 3 figure
Re-used Roman rubbish: a thousand years of recycling glass
The suitability of glass for re-melting and recycling was widely exploited in the past. This paper reviews the evidence, particularly for the 1st millennium AD, using examples from Western Europe. For much of this period glass was produced on a large-scale at a relatively small number of specialised glassmaking sites, which supplied numerous dispersed workshops where glass was modified and shaped. This is only part of the picture however, because the glassmakers, glassworkers and consumers were also linked by a complex, interdependent cycle of supply, use, discard, salvage and re-use, making recycling an essential part of interpreting archaeological glass
Influence of heavy modes on perturbations in multiple field inflation
We investigate linear cosmological perturbations in multiple field
inflationary models where some of the directions are light while others are
heavy (with respect to the Hubble parameter). By integrating out the massive
degrees of freedom, we determine the multi-dimensional effective theory for the
light degrees of freedom and give explicitly the propagation matrix that
replaces the effective sound speed of the one-dimensional case. We then examine
in detail the consequences of a sudden turn along the inflationary trajectory,
in particular the possible breakdown of the low energy effective theory in case
the heavy modes are excited. Resorting to a new basis in field space, instead
of the usual adiabatic/entropic basis, we study the evolution of the
perturbations during the turn. In particular, we compute the power spectrum and
compare with the result obtained from the low energy effective theory.Comment: 24 pages, 13 figures; v2 substantial changes in sec.V; v3 matching
the published version on JCA
Nonlinear atom optics and bright gap soliton generation in finite optical lattices
We theoretically investigate the transmission dynamics of coherent matter
wave pulses across finite optical lattices in both the linear and the nonlinear
regimes. The shape and the intensity of the transmitted pulse are found to
strongly depend on the parameters of the incident pulse, in particular its
velocity and density: a clear physical picture for the main features observed
in the numerical simulations is given in terms of the atomic band dispersion in
the periodic potential of the optical lattice. Signatures of nonlinear effects
due the atom-atom interaction are discussed in detail, such as atom optical
limiting and atom optical bistability. For positive scattering lengths, matter
waves propagating close to the top of the valence band are shown to be subject
to modulational instability. A new scheme for the experimental generation of
narrow bright gap solitons from a wide Bose-Einstein condensate is proposed:
the modulational instability is seeded in a controlled way starting from the
strongly modulated density profile of a standing matter wave and the solitonic
nature of the generated pulses is checked from their shape and their
collisional properties
Coin Tossing as a Billiard Problem
We demonstrate that the free motion of any two-dimensional rigid body
colliding elastically with two parallel, flat walls is equivalent to a billiard
system. Using this equivalence, we analyze the integrable and chaotic
properties of this new class of billiards. This provides a demonstration that
coin tossing, the prototypical example of an independent random process, is a
completely chaotic (Bernoulli) problem. The related question of which billiard
geometries can be represented as rigid body systems is examined.Comment: 16 pages, LaTe
Velocity of sound in a Bose-Einstein condensate in the presence of an optical lattice and transverse confinement
We study the effect of the transverse degrees of freedom on the velocity of
sound in a Bose-Einstein condensate immersed in a one-dimensional optical
lattice and radially confined by a harmonic trap. We compare the results of
full three-dimensional calculations with those of an effective 1D model based
on the equation of state of the condensate. The perfect agreement between the
two approaches is demonstrated for several optical lattice depths and
throughout the full crossover from the 1D mean-field to the Thomas Fermi regime
in the radial direction.Comment: final versio
Prevention of restenosis after coronary balloon angioplasty: rationale and design of the Fluvavastatin Angioplasty Restenosis (FLARE) Trial
Prevention of restenosis after successful percutaneous transluminal coronary balloon angioplasty (PTCA) continues to present the greatest therapeutic challenge in interventional cardiology. Experimental and pathological studies describe restenosis as no more than the biologic healing response to arterial injury. Studies of serial quantitative coronary angiography have demonstrated that this biologic process may be measured as the loss in minimal luminal diameter (MLD) from post-PTCA to follow-up angiography and that it is essentially ubiquitous and normally distributed. Thus, quantitative coronary angiography has become the gold standard for evaluation of the angiographic outcome of clinical trials of new agents and devices aimed at prevention of restenosis. The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors inhibit biosynthesis of mevalonate, a precursor of non-sterol compounds involved in cell proliferation, and thus may control the neointimal response, which forms the kernel of restenosis. Experimental evidence suggests that fluvastatin may exert a greater direct inhibitory effect on proliferating vascular myocytes than other HMG-CoA reductase inhibitors, independent of any lipid-lowering action. The Fluvastatin Angioplasty Restenosis (FLARE) Trial was conceived, in collaboration between the Thoraxcenter, Erasmus University, Rotterdam, The Netherlands, and Sandoz Pharma, to evaluate the ability of fluvastatin 40 mg twice daily to reduce restenosis after successful single-lesion PTCA. Treatment of suitable patients begins 2 weeks before PTCA and continues after successful PTCA (residual diameter stenosis < 50%, without major cardiac complications) to follow-up angiography at 26 +/- 2 weeks. Restenosis is measured by quantitative coronary angiography at a core laboratory as the loss in MLD from post-PTCA to follow-up angiography. It is calculated (90% power, alpha = 0.05) that 730 evaluable patients will be needed to tes
Lagrangian Description of the Variational Equations
A variant of the usual Lagrangian scheme is developed which describes both
the equations of motion and the variational equations of a system. The required
(prolonged) Lagrangian is defined in an extended configuration space comprising
both the original configurations of the system and all the virtual
displacements joining any two integral curves. Our main result establishes that
both the Euler-Lagrange equations and the corresponding variational equations
of the original system can be viewed as the Lagrangian vector field associated
with the first prolongation of the original LagrangianAfter discussing certain
features of the formulation, we introduce the so-called inherited constants of
the motion and relate them to the Noether constants of the extended system
The anomaly of glass beads and glass beadmaking waste at Jiuxianglan, Taiwan
Glass beads and beadmaking waste have been excavated at the Iron Age site of Jiuxianglan (ca. third century BC–eighth century
AD) in southeastern Taiwan. It was suggested that this site may be a production and exchange centre of glass beads in Iron Age
Taiwan. This paper presents the analysis of 44 samples, to explore the relationship between glass beads and waste and the nature
of bead production at Jiuxianglan. The analysis combines data on style, chemical composition, microstructure and distribution of
glass beads and waste. The results do not show a compositional or structural match between the glass beads and glass waste,
suggesting that the glass beads may not have been produced at this site
- …
