14 research outputs found
Investigation of the RTN Distribution of nanoscale MOS devices from subthreshold to on-state
This letter presents a numerical investigation of the statistical distribution of the random telegraph noise (RTN) amplitude in nanoscale MOS devices, focusing on the change of its main features when moving from the subthreshold to the on-state conduction regime. Results show that while the distribution can be well approximated by an exponential behavior in subthreshold, large deviations from this behavior appear when moving toward the on-state regime, despite a low probability exponential tail at high RTN amplitudes being preserved. The average value of the distribution is shown to keep an inverse proportionality to channel area, while the slope of the high-amplitude exponential tail changes its dependence on device width, length, and doping when moving from subthreshold to on-state
Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei
The coalescence model based on nucleon distribution functions from an
isospin-dependent transport model is used to study the production of light
clusters such as deuteron, triton, and He from heavy-ion collisions
induced by neutron-rich nuclei at intermediate energies. It is found that the
emission time of light clusters depends on their masses. For clusters with the
same momentum per nucleon, heavier ones are emitted earlier. Both the yield and
energy spectrum of light clusters are sensitive to the density dependence of
nuclear symmetry energy, with more light clusters produced in the case of a
stiff symmetry energy. On the other hand, effects due to the stiffness of the
isoscalar part of nuclear equation of state and the medium dependence of
nucleon-nucleon cross sections on light cluster production are unimportant. We
have also studied the correlation functions of clusters, and they are affected
by the density dependence of nuclear symmetry energy as well, with the stiff
symmetry energy giving a stronger anti-correlation of light clusters,
particularly for those with large kinetic energies. Dependence of light cluster
production on the centrality and incident energy of heavy ion collisions as
well as the mass of the reaction system is also investigated.Comment: Revised version, typos corrected and discussions added, 14 pages, 15
figures, 1 table, REVTeX4.
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Alzheimer's disease risk polymorphisms regulate gene expression in the ZCWPW1 and the CELF1 loci
10.1371/journal.pone.0148717PLoS ONE112e014871
Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture
The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s disease and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition. © 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply
Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide.
International audienc