The coalescence model based on nucleon distribution functions from an
isospin-dependent transport model is used to study the production of light
clusters such as deuteron, triton, and 3He from heavy-ion collisions
induced by neutron-rich nuclei at intermediate energies. It is found that the
emission time of light clusters depends on their masses. For clusters with the
same momentum per nucleon, heavier ones are emitted earlier. Both the yield and
energy spectrum of light clusters are sensitive to the density dependence of
nuclear symmetry energy, with more light clusters produced in the case of a
stiff symmetry energy. On the other hand, effects due to the stiffness of the
isoscalar part of nuclear equation of state and the medium dependence of
nucleon-nucleon cross sections on light cluster production are unimportant. We
have also studied the correlation functions of clusters, and they are affected
by the density dependence of nuclear symmetry energy as well, with the stiff
symmetry energy giving a stronger anti-correlation of light clusters,
particularly for those with large kinetic energies. Dependence of light cluster
production on the centrality and incident energy of heavy ion collisions as
well as the mass of the reaction system is also investigated.Comment: Revised version, typos corrected and discussions added, 14 pages, 15
figures, 1 table, REVTeX4.