112 research outputs found
A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory
As photodisintegration of deuterons mimics the disintegration of deuterons by
neutrinos, the accurate measurement of the radioactivity from thorium and
uranium decay chains in the heavy water in the Sudbury Neutrino Observatory
(SNO) is essential for the determination of the total solar neutrino flux. A
radium assay technique of the required sensitivity is described that uses
hydrous titanium oxide adsorbent on a filtration membrane together with a
beta-alpha delayed coincidence counting system. For a 200 tonne assay the
detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and
for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and
light water carried out during the first two years of data collection of SNO
are presented.Comment: 12 pages, 4 figure
Using Narrative Research and Portraiture to Inform Design Research
Abstract. Employing an interdisciplinary perspective, this paper addresses how narrative research and portraiture- methods originating from, and commonly used in social sciences- can be beneficial for HCI and design research communities. Narrative research takes stories as a basis for data collection and analysis, while portraiture can be used to create written narratives about interview participants. Drawing on this knowledge, we show how a focus on narrative data, and analysis of such data through portraiture, can be adopted for the specific purpose of enhancing design processes. We hope to encourage design and HCI researchers to consider adopting these methods. By drawing on an illustrative example, we show how these methods served to inform design ideas for digital crafting. Based on our experiences, we present guidelines for using narrative research and portraiture for design research, as well as discussing opportunities and strengths, and limitations and risks
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
Polarized electrons at Jefferson laboratory
The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented
REPORT ON THE MAY 1983 POLARIZED ELECTRON SOURCE WORKSHOP AT SLAC
Les travaux ainsi que les conclusions des journées de travail sur les electrons polarisés en 1983 à SLAC sont passés en revue. Sont aussi inclus quelques progrÚs achevés depuis.The work and conclusions of the 1983 Polarized Electron Source Workshop at SLAC are reviewed. Some mention of progress since that meeting is also included
Recommended from our members
High intensity polarized electron sources
The status of the polarized electron source development program at SLAC will be reviewed. Emission currents of 60 A, corresponding to a space charge limited current density of 180 A/cm/sup 2/, have been obtained from GaAs photocathodes. Electron beam polarization 20% greater than that obtainable from GaAs cathodes has been observed from multilayer GaAs-GaAlAs structures. Work in progress to produce high beam polarization from II-IV-V/sub 2/ chalcopyrite photocathodes will also be described
- âŠ