740 research outputs found

    Localization of an autonomous mobile robot based on ultrasonic sensory information

    Get PDF
    Based on ultrasonic sensory information, an approach is proposed for localization of autonomous mobile robot (AMRs). In the proposed method, it will be proven that the combination of three ultrasonic transmitters and two receivers can determine both the position and the orientation of an AMR with respect to a reference frame uniquely. In this manner, since only ultrasonic sensors are used, the proposed method will be highly cost-effective and easy to implement. To show the validity and feasibility of the proposed method, the hardware configuration and a series of experiments will be given for illustration

    Nonlinear analysis of a simple model of temperature evolution in a satellite

    Get PDF
    We analyse a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite's temperature is analysed by qualitative, perturbation and numerical methods, which show that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.Comment: 13 pages, 4 figures (5 EPS files

    Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique

    Full text link
    The potential energy surface (PES) of Lennard-Jones clusters is investigated using the activation-relaxation technique (ART). This method defines events in the configurational energy landscape as a two-step process: (a) a configuration is first activated from a local minimum to a nearby saddle-point and (b) is then relaxed to a new minimum. Although ART has been applied with success to a wide range of materials such as a-Si, a-SiO2 and binary Lennard-Jones glasses, questions remain regarding the biases of the technique. We address some of these questions in a detailed study of ART-generated events in Lennard-Jones (LJ) clusters, a system for which much is already known. In particular, we study the distribution of saddle-points, the pathways between configurations, and the reversibility of paths. We find that ART can identify all trajectories with a first-order saddle point leaving a given minimum, is fully reversible, and samples events following the Boltzmann weight at the saddle point.Comment: 8 pages, 7 figures in postscrip

    Nonlinear analysis of spacecraft thermal models

    Full text link
    We study the differential equations of lumped-parameter models of spacecraft thermal control. Firstly, we consider a satellite model consisting of two isothermal parts (nodes): an outer part that absorbs heat from the environment as radiation of various types and radiates heat as a black-body, and an inner part that just dissipates heat at a constant rate. The resulting system of two nonlinear ordinary differential equations for the satellite's temperatures is analyzed with various methods, which prove that the temperatures approach a steady state if the heat input is constant, whereas they approach a limit cycle if it varies periodically. Secondly, we generalize those methods to study a many-node thermal model of a spacecraft: this model also has a stable steady state under constant heat inputs that becomes a limit cycle if the inputs vary periodically. Finally, we propose new numerical analyses of spacecraft thermal models based on our results, to complement the analyses normally carried out with commercial software packages.Comment: 29 pages, 4 figure

    Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics

    Full text link
    We extend the exact multilocal renormalization group (RG) method to study the flow of the effective action functional. This important physical quantity satisfies an exact RG equation which is then expanded in multilocal components. Integrating the nonlocal parts yields a closed exact RG equation for the local part, to a given order in the local part. The method is illustrated on the O(N) model by straightforwardly recovering the η\eta exponent and scaling functions. Then it is applied to study the glass phase of the Cardy-Ostlund, random phase sine Gordon model near the glass transition temperature. The static correlations and equilibrium dynamical exponent zz are recovered and several new results are obtained. The equilibrium two-point scaling functions are obtained. The nonequilibrium, finite momentum, two-time t,tâ€Čt,t' response and correlations are computed. They are shown to exhibit scaling forms, characterized by novel exponents λR≠λC\lambda_R \neq \lambda_C, as well as universal scaling functions that we compute. The fluctuation dissipation ratio is found to be non trivial and of the form X(qz(t−tâ€Č),t/tâ€Č)X(q^z (t-t'), t/t'). Analogies and differences with pure critical models are discussed.Comment: 33 pages, RevTe

    Regioselective deacetylation based on teicoplanin-complexed Orf2*crystal structures

    Get PDF
    Lipoglycopeptide antibiotics are more effective than vancomycin against MRSA as they carry an extra aliphatic acyl side chain on glucosamine (Glm) at residue 4 (r4). The biosynthesis of the r4 N-acyl Glc moiety at teicoplanin (Tei) or A40926 has been elucidated, in which the primary amine nucleophile of Glm is freed from the r4 GlcNac pseudo-Tei precursor by Orf2* for the subsequent acylation reaction to occur. In this report, two Orf2* structures in complex with beta-D-octyl glucoside or Tei were solved. Of the complexed structures, the substrate binding site and a previously unknown hydrophobic cavity were revealed, wherein r4 GlcNac acts as the key signature for molecular recognition and the cavity allows substrates carrying longer acyl side chains in addition to the acetyl group. On the basis of the complexed structures, a triple-mutation mutant S98A/V121A/F193Y is able to regioselectively deacetylate r6 GlcNac pseudo-Tei instead of that at r4. Thereby, novel analogs can be made at the r6 sugar moiety

    Long-term studies of hantavirus reservoir populations in the southwestern United States: rationale, potential, and methods.

    Get PDF
    Hantaviruses are rodent-borne zoonotic agents that cause hemorrhagic fever with renal syndrome in Asia and Europe and hantavirus pulmonary syndrome (HPS) in North and South America. The epidemiology of human diseases caused by these viruses is tied to the ecology of the rodent hosts, and effective control and prevention relies on a through understanding of host ecology. After the 1993 HPS outbreak in the southwestern United States, the Centers for Disease Control and Prevention initiated long-term studies of the temporal dynamics of hantavirus infection in host populations. These studies, which used mark-recapture techniques on 24 trapping webs at nine sites in the southwestern United States, were designed to monitor changes in reservoir population densities and in the prevalence and incidence of infection; quantify environmental factors associated with these changes; and when linked to surveillance databases for HPS, lead to predictive models of human risk to be used in the design and implementation of control and prevention measures for human hantavirus disease

    Identification and phylogenetic analysis of orf virus from goats in Taiwan

    Get PDF
    An outbreak of contagious ecthyma in goats in central Taiwan was investigated. The disease was diagnosed by physical and histopathologic examinations, and the etiology of the disease was identified as orf virus by electron microscopy and polymerase chain reaction (PCR) and sequence of major envelope protein (B2L) gene. The entire protein-coding region of B2L gene were cloned and sequenced. Phylogenetic analysis of B2L amino acid sequences showed that the orf virus identified in this outbreak was closer to the Indian ORFV-Mukteswar 59/05 isolate. This is the first report on the molecular characterization of orf virus in Taiwan

    Exploiting the benefits of multi-scale analysis in reliability analysis for composite structures

    Get PDF
    This paper investigates two critical issues, namely propagation of multi-scale uncertainty, and selection of failure criteria, related to reliability analysis of composites by using multi-scale methods. Due to the multi-scale architecture of composites, uncertainties exist in both microscale and macroscale parameters. It is necessary, therefore, to consider random variables at various length scales to ensure accurate estimates of the reliability of composites. Three types of homogenization methods, namely rule of mixtures, Mori–Tanaka and computational homogenization, are adopted to link these two scales, and to propagate uncertainty from micro to macro scales. By integrating these homogenization methods with the stochastic finite element method and structural reliability methods, the reliability of composites can be investigated with a limit state function based on a chosen failure criterion. This multi-scale reliability analysis procedure has been applied to analyse laminated fibre reinforced composites made of AS4/3501 carbon/epoxy. Firstly, a comparative study has been conducted to evaluate the performance of the assumed homogenization methods for the reliability of composites, and to identify advantages compared with a single scale analysis. The results show that multi-scale analysis can provide more accurate reliability estimates. Secondly, several popularly used failure criteria for composites have been compared using multi-scale reliability analysis

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag
    • 

    corecore