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Abstract. Based on ultrasonic sensory information, an approach is proposed for localization of
autonomous mobile robot (AMRs). In the proposed method, it will be proven that the combination of
three ultrasonic transmitters and two receivers can determine both the position and the orientation of
an AMR with respect to a reference frame uniquely. In this manner, since only ultrasonic sensors are
used, the proposed method will be highly cost-effective and easy to implement. To show the validity
and feasibility of the proposed method, the hardware configuration and a series of experiments will
be given for illustration.
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1. Introduction

When an autonomous mobile robot performs tasks such as free-range path tracking
and reactive navigation, the capability to estimate its position with respect to a
reference frame is very important. Among the existing location techniques, most
wheeled mobile robots use thedead-reckoningmethod to calculate their current
locations. However, since this method is based on the encoded or odometric infor-
mation from the wheels, it is subject to major accumulation errors caused by wheel
slippage or surface roughness. Therefore, the robot may fail to keep track of its true
location over long distances.

To compensate for the inaccuracy of dead-reckoning, Kim and Seong [6] de-
vised a highly cost-effective location system which used an encoded magnetic
compass to account for abnormal orientation drift due to wheel slippage, thereby
resulting in robot position recovery. However, a magnetic compass does not func-
tion well at a place where the magnetic field varies from position to position. On
the other hand, Song and Suen [11] used Kalman filtering to investigate how a
low-cost rate-gyro can be applied to adjust dead-reckoning estimates to overcome
the wheel slippage problem. Unfortunately, the low-cost rate-gyro usually suffers
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from high drift rate and cannot eliminate the cumulative errors caused by surface
roughness.

Ultrasonic ranging sensors have proved to be very useful, economical external
sensing systems for localization of mobile robots. The numerous ultrasonic loca-
tion methods can be divided into two groups of technical methodologies. The first
one is that the robot measures time-of-flight (TOF) data from itself to its surround-
ings by using several ultrasonic sensors mounted on itself and then processes this
information to obtain its spatial location by means of barrier tests [2], extended
Kalman filtering with environment models [7, 8, 10, 12], fuzzy fusion logic [9],
and neural networks [5]. The second methodology is based on active beacon po-
sitioning, called 3D-location technique [3], which has a transmitter, as a beacon,
mounted on the robot and several receivers installed at the prespecified locations
with respect to a reference frame. This approach requires the least-squares algo-
rithm or the EKF-based algorithm for converting the TOF temporal data between
the beacon and those receivers to the robot location. Generally speaking, robot
location techniques based on the first methodology lack accuracy and flexibility.
For the 3D-location technique, though the strengths of the system are accurate,
how to determine the orientation (heading angle) of the robot is not taken into
account.

In the method proposed by one of the authors [13], a novel location system was
developed which consists of an improved multisensorial dead-reckoning subsystem
and a modified ultrasonic location subsystem. The novelty of the multisensorial
dead-reckoning lies in the statistical treatment of the robot’s heading readings
from a rate-gyro, a magnetic compass, and encoded information from the driving
wheels. The features for the ultrasonic system hinge on its strengths, which not
only encompass all of the inherent advantages declared in [3] but also provide a
simpler, more economical structure for implementation, installation, and use.

Though the method in [13] has the above-mentioned advantages, it should be
noted that the ultrasonic sensors are used to determine the position of the robot
only, not including the orientation. In this case, one may wonder whether it is pos-
sible to determine the position and the orientation of the robot based on ultrasonic
sensory information only. This in turn motivates the research in this paper and a
novel location method is proposed. In this method, it will be proved first that an
ultrasonic transmitter cannot determine both the position and the orientation of
an AMR regardless of the number of the ultrasonic receivers. This explains why
the determination of orientation is not taken into account in [3] and a magnetic
compass is used in [13]. Then it is proved that the combination of three ultrasonic
transmitters and two receivers can determine both the position and the orientation
of an AMR uniquely provided that the ultrasonic sensors are installed at locations
as specified in the proposed method. In this manner, since only ultrasonic sen-
sors are used, it is expected that the proposed system will be highly cost-effective
and easy to implement. Moreover, the least-squares algorithm will also be used to
process the measured TOF data to obtain a more accurate estimation. To confirm
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the validity and feasibility of the proposed method, a series of examples will be
given for illustration.

The remaining sections of this paper are organized as follows. Section 2 shows
the mathematical frame of the location system, in which two theorems are given to
determine the minimal number of ultrasonic sensors and the locations to install
these sensors. According to these two theorems, Section 3 describes the hard-
ware configuration of the location system. Several experiments will be performed
in Section 4 to confirm the accuracy and performance of the proposed method.
Discussions and conclusions of the paper are given in Section 5.

2. Mathematical Frame of the Location System

Before showing the hardware configuration of the location system, the minimal
number of ultrasonic transmitters and receivers needed in the location system must
be determined first. Moreover, the locations to install these sensors also need to be
specified. Therefore, some notations will be introduced and two theorems will be
given.

Let {A} and {B} be two frames in a working space. For a point in the space,
the representations of this point with respect to the two frames will be denoted as
A[x, y, z] andB[x, y, z], respectively, where the leading superscriptsA andB are
used to indicate the frame to which the point is referenced. Then if the so-called
homogeneous coordinate representation[1] is used, one will obtain

A 
x

y

z

1

 = ATB ·
B

x

y

z

1

 , (1)

whereATB ∈ R4×4 is thetransform matrix[1] between frames{A} and{B}.
With the notations in (1), the following two theorems can be obtained.

THEOREM 1. Suppose that there are two frames{A} and{B} in a working space.
For a given set ofm points, letdi , i = 1,2, . . . , m, denote the distances of them
points to the origin of frame{A}. Then from the values ofdi, i = 1,2, . . . , m,
and the representations of them points with respect to frame{B}, B [xi, yi, zi], i =
1,2, . . . , m, one cannot determine the transform matrixATB uniquely regardless
of the value ofm.

Proof. For convenience of illustration,B[xi , yi, zi], i = 1,2, . . . , m, anddi ,
i = 1,2, . . . , m will be depicted as shown in Figure 1. From this figure, it is
easy to find that if frame{B} and them points are grouped together and then be
rotated about theZA-axis by a degree ofθ , 0 6 θ 6 2π , then the representations
B[xi, yi , zi], i = 1,2, . . . , m, and the values ofdi , i = 1,2, . . . , m, will keep the
same regardless of the value ofθ . However, for a different choice ofθ the rotation
will generate a different transform matrix. Therefore, the transform matrixATB
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Figure 1. A given set ofm points, in whichdi , i = 1,2, . . . , m, denote the distances of the
m points to the origin of frame{A} andB [xi, yi , zi ], i = 1,2, . . . , m, are the representations
of them points with respect to frame{B}.

cannot be determined uniquely from the values ofdi, i = 1,2, . . . , m, and the
representationsB[xi , yi, zi], i = 1,2, . . . , m, regardless of the value ofm. 2

From the above theorem, one can find easily that the position and the orientation
of an AMR cannot be determined uniquely if an ultrasonic transmitter is installed
at a specified position of the reference frame andm receivers are mounted on the
AMR. This explains why the orientation problem is not discussed in [3] and why a
magnetic compass is used in [13]. To determine the position and the orientation of
an AMR uniquely, the following theorem will be needed.

THEOREM 2. Suppose that three points,[0,0,0], [a,0,0], and [0, a,0], are
given in a working space, wherea is a nonzero real number that can be chosen
arbitrarily. Then for any two points,[x1, y1, z] and [x2, y2, z], in the space, the
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values ofx1, y1, x2, andy2 can be determined provided that the distances of these
two points to the points[0,0,0], [a,0,0], and[0, a,0] are given. This in turn will
determine the angleθ = Atan2(y2 − y1, x2 − x1), which is a two-argument arc
tangent function[1]. Meanwhile, the valuez can also be determined provided that
its sign (greater or smaller then zero) is given.

Proof.Letd1, d2, andd3 denote the distances of the point[x1, y1, z] to the points
[0,0,0], [a,0,0], and[0, a,0], respectively. Then one will obtain

x2
1 + y2

1 + z2 = d2
1, (2)

(x1− a)2+ y2
1 + z2 = d2

2, (3)

x2
1 + (y1− a)2 + z2 = d2

3 . (4)

Subtracting (3) and (4) from (2), respectively, will give

2ax1 − a2 = d2
1 − d2

2 (5)

and

2ay1 − a2 = d2
1 − d2

3 . (6)

Rearranging (5) and (6) will result in

x1 = d2
1 − d2

2 + a2

2a
(7)

and

y1 = d2
1 − d2

3 + a2

2a
. (8)

In a similar way, the values ofx2 andy2 can also be determined. Therefore, the
values ofx1, y1, x2, andy2 are determined. Substituting these values into the Atan2
function will then determine the angleθ = Atan2(y2 − y1, x2 − x1). Moreover,
substituting the values ofx1 andy1 into (2) will give

z = ±
√
d2

1 − x2
1 − y2

1. (9)

Therefore, provided that its sign is given, the value ofz can be determined from
one of the two possible values in (9).

3. Hardware Configuration

The physical configuration of the proposed location system is shown in Figure 2,
in which three ultrasonic transmitters are installed at positions[0,0,0], [a,0,0],
and[0, a,0] of the reference frame, respectively, and two receivers are mounted on
the AMR. The only requirement is that the two receivers must be installed at the
same height along thez-axis.
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Figure 2. Physical configuration of the proposed system, in which three ultrasonic transmitters
are installed at positions[0,0, 0], [a,0, 0], and[0, a, 0] of the reference frame, respectively,
and two receivers are mounted on the AMR.

In addition to the three transmitter modules and the two receiver modules, the
hardware of the location system also contains a pair of RF controlled switches and
two 8051 single-chip micro-controllers as depicted in Figure 3. In measuring the
distance between theith transmitter, 16 i 6 3, and thej th receiver, 16 j 6 2,
the first RF controlled switch will send a radio signal to the second and the 8051
micro-controller will start the counting of the TOF. Once the second RF controlled
switch receives the radio signal, theith transmitter module will send ultrasonic
pulses back to thej th receiver module immediately. In this manner, if the distance
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Figure 3. Block diagram of the hardware of the location system.

between theith transmitter and thej th receiver is denoted bydij , then one will
obtain

TOFij = dij

VE
+ dij
VU
, (10)

where TOFij is the TOF between theith transmitter and thej th receiver, andVE

andVU denote the speeds of the electromagnetic wave and the ultrasonic wave,
respectively. However, sinceVE is much larger thenVU in practice, (10) can be
further simplified to be

TOFij = dij

VU
. (11)

Performing the above procedure repeatedly, the values ofdij , 1 6 i 6 3, 16
j 6 2, will be determined sequentially. With these distances, the position and the
orientation of the AMR can then be determined uniquely according to Theorem 2.

4. Experimental Results

Two sets of experimental studies will be performed in this section to investigate
the feasibility, accuracy, and performance of the proposed location system. While
performing the experiments, the room temperature is 27◦C and the counting rate of
the 8051 chip is 50 kHz. In the experiments, the three transmitters will be installed
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Figure 4. Definitions of the frame{AMR} and the heading angleθ . For convenience of
illustration, the axesZref and ZAMR are not shown and can be determined according to
Zref = Xref × Yref andZAMR = XAMR × YAMR, where× denotes the cross product of
two vectors.

at positions[0,0,0], [20,0,0], and[0,20,0] (unit: cm), respectively, with respect
to a reference frame. On the other hand, the two receivers will be installed at po-
sitions[0,20,0] and[0,−20,0] (unit: cm), respectively, with respect to the frame
{AMR}, which is a frame that is attached to the AMR as depicted in Figure 4. The
goal of the experiments is to determine the representation of the origin of frame
{AMR} with respect to the reference frame and the heading angleθ of the AMR.
In each set of experiments, different positions and orientations of the AMR will be
given for comparison.

In applying the proposed method, the concept of least-squares method [4] will
also be used to increase the accuracy of estimation. The procedure is to apply the
proposed methodn times first to obtainn sets of measured values,[x(i), y(i), z(i)]
andθ(i), i = 1,2, . . . , n. Then the optimal estimates of[x, y, z] andθ , which will
be denoted by[x̂, ŷ, ẑ] and θ̂ , can be determined by minimizing the total least
squares error

E =
n∑
i=1

[(
x̂ − x(i))2+ (ŷ − y(i))2+ (ẑ − z(i))2+ (θ̂ − θ(i))2]. (12)
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Table I. Experimental results of Example 1. By applying the proposed method 10 times,
one can obtain 10 sets of measured values,[x(i), y(i), z(i)] andθ(i), i = 1, 2, . . . ,10. The
optimal estimates[x̂, ŷ, ẑ] andθ̂ are then determined from Equations (13)–(16) withn = 10.

Expt. 1 Expt. 2 Expt. 3 Expt. 4

[x, y, z] [0, 0,−190] cm [0, 0,−190] cm [0, 0,−190] cm [0,0,−190] cm

θ 0◦ 45◦ 90◦ 135◦
x̂ −3.1 cm −3.55 cm −2.87 cm −1.73 cm

ŷ −2.29 cm −2.92 cm −1.09 cm −2.74 cm

ẑ −189.02 cm −188.61 cm −189.38 cm −189.3 cm

θ̂ 0.6◦ 46.6◦ 91.2◦ 136.71◦
maxi |x̂ − x(i)| 5.46 cm 3.94 cm 3.75 cm 2.37 cm

maxi |ŷ − y(i)| 3.07 cm 5.21 cm 1.31 cm 5.42 cm

maxi |ẑ − z(i)| 1.34 cm 1.46 cm 0.79 cm 1.05 cm

maxi |θ̂ − θ(i)| 0.77◦ 2.81◦ 0.82◦ 2.97◦

By setting

∂E

∂x̂
= 0,

∂E

∂ŷ
= 0,

∂E

∂ẑ
= 0, and

∂E

∂θ̂
= 0,

one will obtain the optimal estimates of[x, y, z] andθ as follows:

x̂ =
∑n

i=1 x(i)

n
, (13)

ŷ =
∑n

i=1 y(i)

n
, (14)

ẑ =
∑n

i=1 z(i)

n
, (15)

θ̂ =
∑n

i=1 θ(i)

n
. (16)

EXAMPLE 1. Four experiments will be given in this example, in which the head-
ing angleθ of the AMR are 0◦, 45◦, 90◦, and 135◦, respectively. The position of the
AMR will be the same in these four experiments and is represented as[0,0,−190]
(unit: cm) with respect to the reference frame. The measuring procedure is to
apply the proposed method 10 times first to obtain 10 sets of measured values,
[x(i), y(i), z(i)] andθ(i), i = 1,2, . . . ,10. Then these data are used to determine
the optimal estimates[x̂, ŷ, ẑ] and θ̂ according to (13)–(16). The details of the
estimation are given as shown in Table I.
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Table II. Experimental results of Example 2. By applying the proposed method 10 times,
one can obtain 10 sets of measured values,[x(i), y(i), z(i)] andθ(i), i = 1, 2, . . . ,10. The
optimal estimates[x̂, ŷ, ẑ] andθ̂ are then determined from Equations (13)–(16) withn = 10.

Expt. 1 Expt. 2 Expt. 3 Expt. 4

[x, y, z] [0, 0,−150] cm [0, 0,−150] cm [0, 0,−150] cm [0,0,−150] cm

θ 0◦ 45◦ 90◦ 135◦
x̂ −0.94 cm −1.48 cm −1.95 cm −0.92 cm

ŷ −0.47 cm −1.48 cm −0.97 cm −0.52 cm

ẑ −149.83 cm −149.36 cm −149.30 cm −149.84 cm

θ̂ 0.5◦ 46.12◦ 89.22◦ 136.08◦
maxi |x̂ − x(i)| 1.02 cm 2.94 cm 3.05 cm 1.43 cm

maxi |ŷ − y(i)| 0.81 cm 1.71 cm 1.13 cm 0.73 cm

maxi |ẑ − z(i)| 0.19 cm 1.20 cm 0.82 cm 0.34 cm

maxi |θ̂ − θ(i)| 0.81◦ 1.46◦ 0.95◦ 1.77◦

EXAMPLE 2. This example is the same as Example 1 except that the position of
the AMR is placed at[0,0,−150] (unit: cm) with respect to the reference frame.
By applying the same measuring procedure as described in Example 1, the optimal
estimates[x̂, ŷ, ẑ] andθ̂ can be determined. The details of the estimation are given
as shown in Table II.

5. Discussions and Conclusions

This paper has developed a novel location system for an AMR in a 3D environment
based on ultrasonic sensory information only. The hardware of the system consists
of three transmitter modules, two receiver modules, a pair of radio control switches,
and two 8051 single-chip micro-controllers. Using this system, one can determine
the position and the orientation of an AMR uniquely provided that the transmitters
and the receivers are installed at locations specified by the proposed theorem.

From the experimental results in Tables I and II, one can find that the estimates
in Example 2 are more accurate than those in Example 1. An explanation for this
phenomenon is that the distances between the transmitters and the receivers in
Example 2 are shorter than those in Example 1. Though the accuracies in both
examples are different, the optimal position and orientation estimates of the AMR
are all very close to the actual values, which verifies that the proposed system
provides highly accurate and reliable estimates.

In performing the experiments, it should be pointed out that only the room
temperature is measured. Therefore, one can increase the accuracy of the pro-
posed method by measuring the mean ambient temperature correctly. Moreover,
the counting rate the micro-controllers can also be increased for more accurate
estimates.
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