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Abstract

We analyse a simple model of the heat transfer to and from a small satellite or-
biting round a solar system planet. Our approach considers the satellite isothermal,
with external heat input from the environment and from internal energy dissipation,
and output to the environment as black-body radiation. The resulting nonlinear or-
dinary differential equation for the satellite’s temperature is analysed by qualitative,
perturbation and numerical methods, which show that the temperature approaches
a periodic pattern (attracting limit cycle). This approach can occur in two ways,
according to the values of the parameters: (i) a slow decay towards the limit cycle
over a time longer than the period, or (ii) a fast decay towards the limit cycle over a
time shorter than the period. In the first case, an exactly soluble average equation is
valid. We discuss the consequences of our model for the thermal stability of satellites.

1 Introduction

The design process of any spacecraft necessarily includes a thermal analysis, performed to
guarantee that both the bus and the payload are kept along the whole mission within the
appropriate temperature range [1]. The thermal environment of a satellite in orbit is very
harsh, dominated by vacuum conditions which make difficult to find a way of cooling down
the components of the spacecraft. Every single element of the satellite has to be thermally
analysed to verify that its requirements are fulfilled. To do it, it is necessary a rather
detailed design of the spacecraft, as it implies to calculate thermal loads and couplings
between elements. This is usually carried out by commercial software tools based on
numerical methods.

During the generic trade-off study, early in the design process, that is, when the concept
of the spacecraft is still open, it is very convenient to assess the mean temperature of the
satellite and its variation by means of analytical tools. This method provides valuable
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information about the feasibility of the spacecraft from the thermal point of view as well
as the possibility of easily carrying out parametric analyses to study the influence of the
different variables involved in the problem.

The purpose of the present study is to analyse the thermal behaviour of a small compact
satellite spinning in a low orbit round a solar system planet (the Earth, say) as a function
of time, using analytical or semi-analytical tools. In orbit, the spacecraft is subjected to
periodic heat loads and it is expected to reach a thermally periodic state. Apart from
obtaining the temperature oscillations once reached this periodic state, this analytical
approach allows us to study the convergence of the satellite temperature to the periodic
behaviour starting from different initial conditions, as it can occur from launch conditions
or orbital manoeuvres.

The results are obtained by applying the energy balance equation to the satellite, taking
into account both the external heat loads, i.e. the solar irradiation, the planet albedo (solar
irradiation reflected on the planet) and the infrared (IR) radiation from the planet, as well
as the internal dissipation.

We begin with the formulation of the energy balance equation as a non-dimensional
ordinary differential equation (ODE), which is nonlinear and non-autonomous. Then, we
consider an autonomous ODE that plays the role of an average of the actual equation.
That autonomous equation is exactly soluble and guides our intuition of the behaviour of
the actual equation and helps in its analysis. This analysis is carried out with qualitative,
perturbation and numerical methods. Finally, we present our conclusions, regarding the
design of satellites.

2 Nonlinear ODE for the satellite temperature

Let us assume that the satellite is approximately isothermal, so we characterize it by
its temperature T . The heat input consists of an external flow coming from the space
environment, in particular, the solar irradiation, the planetary albedo and the planetary
IR radiation, and the internal heat due to the equipment dissipation. The solar irradiation
and the planetary albedo have periodic variation, according to the position of the satellite
on its orbit. On the contrary, the planetary IR radiation and the internal heat operate at
constant rate.

Let us assume that the solar irradiation changes from constant to vanishing (when
the satellite is in the planet’s shade), whereas the albedo depends on the angle between
the sunlight and the vertical to the satellite (and is much smaller in absolute value).
Furthermore, we assume that the albedo vanishes for one fraction of a period whereas the
satellite’s night (when it is in the planet’s shade) lasts for another (smaller) fraction. We
denote the heat rate due to solar irradiation by Q̇s, and the maximum albedo heat rate by
Q̇a (at the satellite’s noon). In addition, let the constant rate source have power Q̇c (the
sum of the equipment dissipation and planetary IR radiation). Then, the energy balance
equation that yields the temperature T is

C Ṫ (t) = Q̇s fs(νt) + Q̇a fa(νt) + Q̇c − Aǫσ T (t)4;
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fs(x) = 1, 0 ≤ x ≤ x1 or 1 − x1 ≤ x ≤ 1; fs(x) = 0, x1 < x < 1 − x1;

fa(x) = cos(2πx), 0 ≤ x ≤ x2 or 1 − x2 ≤ x ≤ 1; fa(x) = 0, x2 ≤ x ≤ 1 − x2;

fs,a(x) = fs,a(x − 1), x ≥ 1.

Here C is the satellite’s thermal capacity, ν the orbital frequency, A is the satellite’s surface
area, ǫ its emissivity, and σ the Stefan-Boltzmann constant. The values of x1 and x2 are
smaller than one half and they determine the fractions of the period with vanishing albedo
or sunshine, respectively. In principle, x2 = 1/4 and x1 > x2 (we assume that the albedo
vanishes for half a period whereas the satellite’s night is shorter: we take it as one fifth of
the period, that is, x1 = 2/5, in an example below).

We can write this equation in non-dimensional form by defining a = Aǫσ/(Cν), ks =
a1/3 Q̇s/(Cν), ka = a1/3 Q̇a/(Cν), kc = a1/3 Q̇c/(Cν), and non-dimensional temperature
variable θ = a1/3 T and time variable νt (which we still denote t for notational simplicity).
Then,

θ̇(t) = kc + ks fs(t) + ka fa(t) − θ(t)4. (1)

Unfortunately, this nonlinear ODE cannot be reduced to a quadrature; but we can deduce
its relevant properties, nevertheless.

We note that, if we remove the oscillating terms, the resulting equation

θ̇(t) = k − θ(t)4 (2)

(where k = kc) is immediately reduced to a quadrature, which can be integrated analyt-
ically. Moreover, we can deduce the qualitative behaviour of the solutions in a straight-
forward way: there is one fixed point, θeq = k1/4, and it is stable. It is the equilibrium
temperature, at which the heat input and the radiation output balance one another. When
the temperature is close to it, θ = k1/4 + ∆θ, we obtain the linear ODE

∆̇θ(t) = −4k3/4∆θ(t),

with solution
∆θ(t) = ∆θ(0) exp(−4k3/4t). (3)

Therefore, ∆θ halves in a time ∆t = (ln 2/4) k−3/4 = 0.17/θeq
3; and the larger is θeq, the

shorter it takes to reach equilibrium. We have checked that the exact solution of Eq. (2)
is well approximated by the linear equation solution (3).

We remark that Eq. (2) can be naturally connected with Eq. (1) if we assume that k
is the average of kc + ks fs(t) + ka fa(t) over one period, namely, k = kc + 2x1ks + ka/π
(rather than k = kc). We explore the consequences of this connection in the next section.

With k = kc + 2x1ks + ka/π, reverting to physical variables, we have

Teq =

[

Q̇c + 2x1 Q̇s + Q̇a/π

Aǫσ

]1/4

. (4)

Note that it does not depend on the parameters C and ν, associated to the time derivative
of the temperature in the ODE in physical variables.
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3 Solution of the nonlinear ODE for the temperature

evolution

In this section, we first present a qualitative analysis, which allows us to prove the existence
of an attracting limit cycle. To obtain the transient behaviour and the properties of the
limit cycle, we employ perturbation theory. Finally, we perform a numerical analysis of
the ODE, to check the results of the preceding methods and to obtain concrete and more
precise numerical results.

3.1 Qualitative analysis

Equation (1) is non-autonomous and therefore equivalent to an autonomous system of two
ODE’s, namely, the system formed by Eq. (1) and the trivial equation ṫ = 1. The generic
behaviour of an autonomous system of two first-order ODE’s is to have “simple” attracting
sets, namely, equilibrium points or limit cycles, because of the Poincaré-Bendixson theorem
[2, 3, 4]. Given the nature of our problem, we can also apply the theory of ODE’s with
periodic coefficients (see, e.g., Ref. [5]): we can reduce the dynamics in the (t, θ)-plane
to the cylinder [0, 1) × (0,∞). Furthermore, we can consider θ as the radial coordinate
and 2πt as the angular coordinate of a plane with the origin excluded (equivalent to the
mentioned cylinder). Given that there cannot be fixed points (since the equation ṫ = 1
forbids it), the Poincaré-Bendixson theorem implies that the only possible attractors are
limit cycles, with the period imposed by the heat input.

The Poincaré-Bendixson theorem states that a curve solution of a two-dimensional
autonomous ODE that has no singularities (e.g., fixed points) and is contained in a compact
domain for all t ≥ 0 approaches a limit cycle. We use a consequence of this theorem: given
two concentric closed curves limiting an annular region that is free of singularities and such
that the vector of derivatives on the two curves points towards the inside of the region,
there exists a limit cycle in this annulus.

To prove the uniqueness of the limit cycle, we appeal to Dulac’s criterion for an annular
region: if the autonomous system

ẋ = P (x, y), ẏ = Q(x, y)

is such that the divergence ∂xP + ∂yQ has constant sign in an annular region, then this
region contains at most one limit cycle. The proof of this criterion follows from Green’s
theorem [3].

It is easy to check that Eq. (1) is such that θ < θmin = kc
1/4 ⇒ θ̇ > 0 and θ > θmax =

(ks + ka + kc)
1/4

⇒ θ̇ < 0, for all t. Note that θmin and θmax correspond to the equilibrium
temperatures with constant minimum or maximum heat input, respectively. Therefore, the
trajectories in the plane with θ as the radial coordinate and 2πt as the angular coordinate
which begin inside the annulus defined by those two temperatures are confined in it, and
there is (at least) one limit cycle (with an oscillation in θ confined to take place within those
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values). Furthermore, this limit cycle is unique, because div(kc+ks fs(t)+ka fa(t)−θ4, 1) =
−4 θ3 < 0.

The trajectories inside the annulus are alternately increasing and decreasing, as the
right-hand side of Eq. (1) changes sign. To be precise, if we define the periodic function

θlim(t) = [kc + ks fs(t) + ka fa(t)]
1/4 ,

with minimum and maximum values θmin and θmax, respectively, the sign of θ̇(t) changes
when the trajectories cross it. This is represented in Fig. 1.

Using θ as the radial coordinate and 2πt as the angular coordinate, Fig. 1 becomes the
polar plot in Fig. 2. This polar plot is more useful to represent convergence to the limit
cycle in a standard way.

We are interested in two questions: (i) finding the features of the limit cycle and the
rate of convergence to it; (ii) analysing how this limit cycle and the rate of convergence
depend on the constants kc, ks, ka. These questions cannot be answered by a qualitative
analysis, so we turn to other methods.

However, let us note that some more qualitative information can be obtained from a
comparison with the non-oscillating Eq. (2): if θeq = k1/4 = (kc + 4ks/5 + ka/π)1/4 is
sensibly smaller than one, the convergence time ∆t = θeq

−3 is large, so that it is consistent
to consider Eq. (2) as an averaged equation. To be precise, Eq. (2) can be derived as an
equation for the mean temperature in Eq. (1) by averaging it over one period. Therefore,
the evolution is given by a long-time decay to θeq and a short-time oscillation about that
long-time behaviour (as in Fig. 1).

Thus, it seems convenient to consider Eq. (1) as a perturbation of Eq. (2), namely, to
consider the time-dependent (oscillating) functions fa,s as a perturbation. Then, we can
employ standard perturbation methods [6]. We do so in the next section.

3.2 Perturbation theory

As we have explained above, our intention is to take advantage of the simple solution of
Eq. (2) by taking it as the basis of a perturbation scheme. Therefore, we write Eq. (1) as

θ̇(t) = k + ε f(t) − θ(t)4, (5)

where k = kc+2x1 ks+ka/π, f(t) = kc−k+ks fs(t)+ka fa(t), and ε is a formal perturbation
parameter to be set to one at the end. Note that f(t) is defined such that it has vanishing
average over a period and, therefore, it represents the deviations about the mean value
k. Furthermore, the solution of Eq. (5) must fulfill the initial condition θ(0) = θin. We
assume an expansion of θ(t) of the form

θ(t) =
∞

∑

n=0

εnθn(t),
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Figure 1: Results of the numerical analysis of the ODE with ks = 0.13, ka = 0.007 and
kc = 0.016, explained in the text: (left) convergence to the attractor; (right) detail of the
first period. Note how the trajectories change from increasing to decreasing, and viceversa,
as they cross the dashed line θlim(t) (the bottom of this line, at kc

1/4 = 0.36, is below the
plot regions).

Figure 2: Polar plot of the trajectories in Fig. 1 (right): the radius is θ−0.5 (subtracted to
display well-separated lines) and the angle is 2πt. The limit cycle is the bold dashed line.
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and substitute it into Eq. (5). Equating to zero the successive powers of ε, we obtain the
basis equation and an infinite set of linear ODE’s, namely,

θ̇0(t) = k − θ0(t)
4, (6)

θ̇1(t) = f(t) − 4θ0(t)
3θ1(t), (7)

θ̇2(t) = −6θ0(t)
2θ1(t)

2
− 4θ0(t)

3θ2(t), (8)

. . . . . . . . .

The initial condition for θ0(t) is θ0(0) = θin, while the remaining equations fulfill θn(0) = 0.
These ODE’s can be solved subsequently, namely, we can solve first the equation for

θ0(t) and, then, we can solve the equation for θ1(t) and so onwards. Of course, the equation
for θ0(t) is Eq. (2), which we have already solved. The following equations are just first-
order linear inhomogeneous equations, which are soluble by quadratures [6]. However, their
solution involves complicated integrals that cannot be made analytically. In particular,
Eq. (7) has the solution

θ1(t) =
1

I(t)

∫ t

0

f(τ)I(τ) dτ, I(t) = exp

[

4

∫ t

0

θ0(τ)3dτ

]

;

but I(t) has no analytic expression.
To overcome this difficulty and obtain analytic expressions, we can use instead of the

exact function θ0(t) the approximated function given by Eq. (3), namely, θ0(t) = θeq +
(θin−θeq) exp(−4k3/4t). Thus, the integral in I(t) becomes a sum of integrals of exponential
functions, which yield exponential functions again. In the large-t limit (when t ≫ θeq

3),
the exponentials decay and the value of I(t) further simplifies to I(t) = exp

(

4k3/4t
)

. Then,

θ1(t) =

∫ t

0

f(τ) exp
[

−4k3/4(t − τ)
]

dτ =

∫ t

0

f(t − τ) exp
[

−4k3/4τ
]

dτ. (9)

Furthermore, in the large-t limit and given that f(t) is periodic, we can extend the upper
integration limit in the latter integral from t to ∞. Thus, we have a periodic function,
namely, an approximation to the limit cycle (past the transient regime). We can obtain a
general expression of this periodic function through Fourier analysis.

3.2.1 Fourier analysis

Let us expand f(t) in Fourier modes as

f(t) =
∞

∑

m=−∞

fm e2πimt.

Since f(t) is real and we assume that it is symmetric with respect to t = 0, the coefficients

fm are real and f
−m = fm; in addition, f0 =

∫ 1

0
f(t) dt = 0. The other Fourier coefficients

are given by

fm =

∫ 1

0

f(t) e−2πimt dt . (10)
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It is straightforward to solve for θ1(t):

θ1(t) =

∞
∑

m=−∞

fm e2πimt

2πim + 4k3/4
= 2

∞
∑

m=1

fm
4k3/4 cos(2πmt) + 2πm sin(2πmt)

4π2m2 + 16k3/2
. (11)

If we substitute the form of f(t) = kc − k + ks fs(t) + ka fa(t) into Eq. (10), we obtain

fm = ks
sin(2πmx1)

πm
+

ka

2

[

sin(2π(m + 1)x2)

π(m + 1)
+

sin(2π(m − 1)x2)

π(m − 1)

]

,

when m 6= 0. With x2 = 1/4,

fm = ks
sin(2πmx1)

πm
−

ka

π(m2 − 1)
cos

(

m
π

2

)

.

On the other hand, independently of the form of fm, if the convergence time ∆t = θeq
−3

is large, we have that 4k3/4 ≪ 2π, so we can neglect in Eq. (11) the terms with k and write
the crude approximation

θ1(t) = 2

∞
∑

m=1

fm
sin(2πmt)

2πm
. (12)

This approximation is equivalent to neglecting in the right-hand side of Eq. (7) the second
term with respect to the first one, that is to say, it implies that θ1(t) follows f(t) with no
delay. We can use it to provide an estimation of the amplitude of the oscillations, with
the following simple method. This estimation can be useful in the conceptual design of the
satellite.

The largest variations of the slope of θ(t) and of its approximation θ1(t) take place at
the discontinuities of f(t), namely, at t = x1, 1 − x1 (in the first period). f(t) changes
sign at those times and the periodic function θ1(t) has its maximum and minimum there.
In between, we can take f(t) constant and, therefore, θ1(t) linear. Hence, we compute the
slopes at two convenient points, namely, t = 0, 1/2, where θ1(t) = 0, according to Eq. (12).
We use this information to calculate the maximum and minimum of θ1(t). The slope at
t = 0 is f(0) = (1 − 2x1)ks + (1 − 1/π)ka, so the maximum is

θ1max = x1 f(0) = x1 [(1 − 2x1)ks + (1 − 1/π)ka] . (13)

Then, with ks = 0.13, ka = 0.007 and kc = 0.016 (values to be justified in Sect. 3.3),
θ1max(x1 = 0.4) = 0.4 × 0.031 = 0.012. The slope at t = 1/2 is f(1/2) = −2x1ks − ka/π,
so the maximum is

θ1max = −(1/2 − x1) f(1/2) = (1/2 − x1) [2x1ks + ka/π] . (14)

In particular, θ1max(x1 = 0.4) = (0.5−0.4)×0.106 = 0.0106. Both values agree sufficiently.
Since θ1(t) in Eq. (12) is an odd function, the minimum is at t = 1−x1 = 0.6 and its value
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is the negative of the maximum. A graphical comparison of the present approximation
with the actual limit cycle is displayed in Fig. 3.

Note that Eqs. (13) and (14) coincide if ka = 0. In fact, the preceding method relies on
the particular form of f(t), namely, it is close to a step function. This is the reason why
the method yields a good result. Of course, while still using the approximation leading to
Eq. (12), the preceding method is improved by the formula

θ1(t) =

∫ t

0

f(τ) dτ ,

which demands a little more work to yield the maximum value of θ1. Better approximations
to θ1 are possible by considering k in Eq. (11), that is to say, by considering the displacement
of θ1(t) [θ1(0) 6= 0]. In a different sense, the approximation is also improved by carrying
on the perturbation scheme to the second order.

3.2.2 Second order approximation

Eq. (8) is similar to Eq. (7), if we consider θ0 = θeq and (the square of) the first order
solution as the forcing term. Therefore, a similar reasoning leads us to the existence of a
periodic solution for θ2(t) in the large-t limit, which can be obtained by Fourier analysis.
The result is

θ2(t) = −6 k1/2

∞
∑

p=−∞

e2πipt

2πip + 4k3/4

∞
∑

m=−∞

fm fp−m

2πip − 4π2m(p − m) + 16k3/2
. (15)

We can see that the perturbation series is a power series in the Fourier coefficients of
the forcing term and its convergence depends on the magnitude of this term. Given that
this term is proportional to ks and ka, the convergence of the series is improved when these
constants are small. This condition is related to the one that we found for Eq. (2) to hold
as an average equation, namely, that k = kc + 2x1 ks + ka/π is small. Thus, it is consistent
with Eq. (2) as the basis of the perturbation scheme.

3.3 Numerical solutions

We use a standard numerical method to integrate Eq. (1), for given values of ks, ka, kc. Let
us see what values are adequate for a small satellite that is orbiting round the Earth and
which can be considered isothermal.

We can take the satellite to be a cube of 0.5 m side and mass of 50 kg. Let us
assume that it is mostly covered by solar cells. Then, suitable values for the absorptivity
and emissivity are α = 0.8 and ǫ = 0.7, respectively. We assume the satellite’s average
specific thermal capacity to be 0.2 W h kg−1 K−1 (corresponding to a composition of
alluminium with some plastic). An adequate value for the orbital frequency is (1.5 h)−1.
Therefore, Cν = 50 kg 0.2 Whkg−1 K−1(1.5 h)−1 = 6.67 W/K and a = Aǫσ/(Cν) =
1.5 m2 0.7 5.7 10−8 Wm−2 K−4/(6.67 W/K) = 8.99 10−9 K−3.
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Figure 3: Linear approximation to the first-order perturbative limit cycle θeq + θ1(t), such
that it is linear by pieces (dashed line), compared to the real limit cycle (full line).

The solar irradiation heat input is the product of the solar constant, the absorptivity
and the projected area (a quarter of the real area); namely, Q̇s = 1370 Wm−2 0.8 [6(0.5 m)2/4] =
411 W. Therefore, ks = a1/3 Q̇s/(Cν) = 0.128. The albedo is very variable, and to calculate
Q̇a, it is necessary, in addition, to consider the visibility factor. We take an average value
of Q̇a = 0.05 Q̇s so ka = 0.0065.

The constant heat input is the sum of the equipment dissipation plus the planetary IR
irradiation input. The equipment dissipation power is due to the transformation of the
incoming irradiation power. If we assume that the solar cells cover 80% of the satellite’s
surface and their efficiency is about 10%, and we take into account that the solar irradiation
only holds for a fraction 2x1 = 4/5 of the period, we deduce that the power dissipated is
about 30 W. The planetary IR irradiation input can be estimated by applying the energy
balance to the planet (Earth). This balance yields an IR radiation flux of about 7% of
the solar constant. We can take the absorptivity in the IR to be similar to the emissivity
ǫ = 0.7. Hence, the planetary IR irradiation is about 23 W and Q̇c = 53 W.

Summarizing, we can take ks = 0.13, ka = 0.0070 and kc = 0.016. Furthermore, we
consider seven values of the initial condition T (0) (t = 0 is the noon) uniformly distributed
in the interval 273 K ≤ T ≤ 300 K, corresponding to nondimensional 0.57 ≤ θ ≤ 0.63.
These values are included between θmin = kc

1/4 = 0.36 and θmax = (ks + ka + kc)
1/4 =

0.625. The results are plotted in Fig. 1, for the time interval 0 ≤ t ≤ 5, which is sufficient
to show convergence to the limit cycle.

Indeed, in our example, we are in a situation in which θeq = (kc + 4ks/5 + ka/π)1/4 =
0.591 is sufficiently small to apply the averaged equation (2). The convergence time is
∆t = θeq

−3 = 4.8. Fig. 1 clearly shows that the evolution is given by an oscillation with
unit period superimposed to a slower and approximately exponential convergence in a time
∆t.

To measure precisely the attractor characteristics, we choose the initial condition θ(0) =
θeq = 0.591 and we let the numerical integration up to t = 10. The resulting solution has
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θ(10) = 0.592, which is slightly different from θeq (although the difference is inappreciable
with two-digit precision). Of course, the solution with θ(0) = 0.592 is the limit cycle.
It has local minimum and maximum amplitudes 0.58 and 0.60 at t = 2/5 and t = 3/5,
respectively. Those extreme values are quite close, considering the interval defined by
θmin = 0.36 and θmax = 0.625 (see Fig. 1). The limit cycle is plotted in Fig. 3.

4 Discussion

Regarding the problem of heat transfer in a satellite, the main conclusions that we can draw
from our analysis are the following. First of all, as regards the temperature stability, it
holds in the sense of convergence to the limit cycle behaviour, guaranteed by the application
of the Poincaré-Bendixson theorem and Dulac’s criterion for an annular region. Moreover,
the convergence is exponential.

The limit cycle behaviour has a time dependence related to the periodic heat input,
namely, approximately similar to its integral, but somewhat displaced. To be precise, the
limit cycle consists, in one period, of a temperature-growing phase when the solar heat input
is on (as is the albedo), and a relaxation phase in which the temperature falls to adjust to
the constant input Q̇c (although this phase ends long before the temperature approaches
the corresponding equilibrium value). The total amplitude of the temperature oscillation
is relatively small in the example that we have studied. This example, with realistic values
of the non-dimensional constants ks, ka, kc for a low-orbit small satellite (reasonably small
values, in particular), shows that the attractor is approached exponentially but in a time
reasonably larger than the period. This time is simply given in terms of ks, ka, kc by
∆t = k−3/4, where k = kc + 2x1ks + ka/π. Moreover, the mean temperature in the limit
cycle is θeq = k1/4.

It is useful to compare the mean temperature θeq with the oscillation about it. The
former depends on k, namely, the average of kc + ksfs(t) + kafa(t), whereas the latter
depends on f(t), which is the oscillation of ksfs(t) + kafa(t) (kc is a constant). Thus, the
temperature oscillation is independent of kc (the constant heat input). This constant is
bound to be quite smaller than ks, for physical reasons, since the equipment dissipation
power is due to the transformation of the incoming solar irradiation power, and the IR
irradiation input is a fraction of the solar input. On the other hand, ka ≪ ks, and we
assume that x1 > 1/4. In conclusion, the main contributions to k and, therefore, to θeq

are due to ks. If the temperature oscillation is estimated by Eqs. (13) or (14), the main
contribution to it also seems to be due to ks; except for the factor 1 − 2x1, which can be
small. Let us first note that Eq. (13) yields a larger value than Eq. (14) if x1 > 1/(2π),
which always holds. Focusing on Eq. (13), we note that the coefficient 1 − 2x1 of ks is
smaller than the coefficient of ka. When x1 approaches 1/2, we only have the ka-term: then
the satellite is always under the solar irradiation, which does not oscillate; in consequence,
the temperature oscillation is only due to the albedo and, therefore, is depressed.
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Let us express the temperature oscillation given by Eq. (13) in physical variables:

[T − Teq]max
= a−1/3 θ1max = x1

(1 − 2x1)Q̇s + (1 − 1/π)Q̇a

Cν
.

Contrary to the expression of Teq in Eq. (4), this expression depends on C and ν but it does
not depend on A, ǫ and σ. We expect both expressions to be very useful for conceptual
thermal design.

Of course, in the numerical example in Sect. 3.3 we have not considered every orbital
circumstance and we have just intended to find a set of sensible values for the constants.
More information on satellite design and the space thermal environment can be found in
the literature [1]. It is worthwhile to discuss briefly here possible changes of the values
of ks and kc. While the ratio kc/ks ≃ 0.1 is adequate for a small satellite, the absolute
values of ks, kc can be amply changed; for example, by increasing the period (which we
have taken as 1.5 h in our case). It is easy to see that both ks and kc are proportional to
the 4/3rd-power of the period. Thus, if we increase the period by a factor of ten, say, the

constants increase by a factor of 104/3, so that ∆t = (kc + 2x1ks + ka/π)−3/4 decreases by a
factor of ten, becoming smaller than one (the period). In this situation, the convergence to
the limit cycle is very fast. In fact, it is appropriate to consider the opposite approximation
to the temperature evolution, namely, during the decay to the limit cycle, the temperature
only changes slightly along this limit cycle.

Further analysis could be based on a more refined model than the isothermal model that
we have used. In particular, a two-node model has been studied by Guerra, Pérez-Grande
and Sanz [7]. The two ODE’s for the two-node model are equivalent to an autonomous
system of three ODE’s. As is well known, such system can have chaotic behaviour [4].
However, we expect that the situations that are well approximated by the one-node model
that we have analysed do not exhibit chaotic features and, therefore, can be conveniently
studied, and provide, in addition, a basis for this very simple model.
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